Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The surface properties of metals can be modified by using thin hybrid coatings without changing the metallic look of the surface. These properties include for example anti-fouling, abrasive resistance and corrosion resistance.
People have been spraying two-component materials for decades. Some processes are very rudimentary, such as mixing by hand and brushing the material on the surface. More recent techniques would be impingement mixing the material (using air to force the materials together and then spraying the material on the surface).
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
During the construction of a 56km long 16 in. carbon steel sour gas pipeline, repetitive surfacepreparation failures were detected during visual inspection of pipeline girth weld internal surface prior tocoating application. Such failures represented 67% of the total pipeline girth welds and were manifestedby excessive sharp-edges at the root pass. To identify the failure causes, an investigation wasperformed through reviewing the pipeline, fabrication and coating application specifications andprocedures, quality control records and performing an extensive visual inspection through an advancedvideo robotic crawler on all pipeline girth welds made. Upon investigation analysis, the failures werecaused by sharp-edges in the root pass which were attributed to improper practices duringmanufacturing, field fabrication and pre-coating quality control. The failure analysis indicated that themechanized Gas Metal Arc Welding process, with the parameters used, was not suitable for internalgirth weld coating application. In addition, a more stringent requirement should be applied to theacceptable pipe-end diameter tolerance and pre-coating quality control to ensure absence of similarpremature surface preparation failures. The pre-coating quality control can be improved throughutilization of robotic laser contour mapping crawler for precise detection and sizing of unsatisfactorysurface weldment defects, including sharp edges.
Development of a ballast tank coating has its' challenges, providing a long term protective coating that can withstand the stress of operational life, whilst being applied in less than ideal conditions has always been the goal.