Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Microbiologically influenced corrosion (MIC) is a key oilfield problem associated with microbial activity, and can be described as the accelerated corrosion of surfaces (usually concrete or iron/steel) by the biological action of naturally present or externally introduced microorganisms. MIC incidents can occur anywhere that a system is exposed to the environment, where microorganisms can enter often via fluid flow and colonize various surfaces for their own growth. MIC is a persistent concern in practically any upstream, midstream, or downstream system where water could be present for microorganism colonization, including topside, subsurface, aerobic (with oxygen), anaerobic (without oxygen), and at extreme temperatures and salinities.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The ability to bundle the ATP MIC diagnostic assay with DNA acquisition for metagenomics would reduce the cost and labor intensity of DNA extraction, and alleviate complex sample storage and handling logistics - thus to substantially improve resultant molecular assay accuracy and accessibility.
There are mainly two commonly adopted criteria for controlling CP. One is the polarized potential criterion and the other one is the polarization shift criterion1. These criteria are not the true criterion for cathodic protection; they are the surrogate criteria (see below). The polarized potential criterion is to control the instant-off structure-to-electrolyte potential within a specified range. For example, the instant-off potential should be between -0.85 and -1.2 V vs Cu/CuSO4 (VCSE) for pipelines buried in soil. The polarization shift criterion is to control the polarization of a CP-protected structure to a given minimum value and this minimum value is usually 100 mV. The polarization is determined either by the difference between the corrosion potential of the structure measured before CP is applied and the instant-off structure-to-electrolyte potential, or by the difference between the depolarized potential of the structure and the instant-off structure-to-electrolyte potential.
Cases illustrating the capability of the multi-electrode array in detecting the initiation and propagation of localized corrosion and coating failure: (i) Monitoring localized corrosion…(ii) Visualizing passivity, its breakdown…(iii) Imagining coating disbondment under overprotection.
Electrical Resistance (ER) based probes are widely used to monitor corrosion of the aboveground storage tank (AST) bottoms. Prevention of soil-side corrosion of the bottom plates of aboveground crude oil storage tanks is a major challenge in the oil and gas industry. Vapor corrosion inhibitors (VCIs) are increasingly being used to mitigate tank bottom corrosion. Therefore monitoring AST bottom corrosion and VCI effectiveness is an important factor in determining the bottom plate corrosion rate and in taking preventive action such as application of VCIs. ER probes are based on the bulk resistivity measurements. The change in resistivity data over a given period is converted to corrosion rates. Since the resistivity is the bulk measurement the ER-measured corrosion rate is an average value representing general pitting and microbiological induced corrosion. A study was conducted to rigorously compare the ER probe measurements with the corrosion observed on the mass-loss coupons. The ER probes were placed in a corrosive sand environment along with the mass-loss coupons which experienced both general and pitting corrosion. The coupons were removed after 6 months and ER probe data were continuously recorded over the test duration. The coupons were scanned using a laser profilometer which provided metal depth versus position data. The coupon data were analyzed to estimate the corrosion rate distribution. In parallel the ER probe data were also analyzed using the rolling average method. The two data sets were compared to identify similarities and delineate differences between the ER probes and mass-loss coupons. This analysis was used to determine suitability of using the ER probes for monitoring the tank bottom corrosion and VCIs’ effectiveness.
The author has utilized two types of instruments in conducting hydrogen studies. Hydrogen analyzers are used extensively in both the laboratory and in industrial steam generating plants. This is a collection of five case studies.
In previous years, we have explored the use of electrochemical sensors for humidity and corrosion measurements inside of natural gas pipelines. Designed to operate in systems where a conductive aqueous phase is intermittent or unavailable, these membrane-based sensors utilize electrochemical techniques such as linear polarization resistance and electrochemical impedance spectroscopy to determine the environment’s corrosivity to the pipeline material. We now aim to explore this sensor’s performance and capabilities in more complex systems, specifically in environments that promote localized corrosion. Using the aforementioned electrochemical techniques, along with electrochemical noise and cyclic voltammetry, we probe and monitor localized corrosion and general corrosion of X65 steel in the presence of inorganic pitting agents. Experiments are conducted in both aqueous and nonaqueous environments. The additional functionality increases the quantity and quality of corrosion data from these sensors, offering to internal corrosion-monitoring programs a more complete picture of real-time corrosion within their natural gas pipelines.
Steel rebars in concrete structures are usually protected from corrosion by a thin layer of passive film, which is formed due to the high alkalinity of concrete pore solution.1-2 However, this protective passive film could be damaged by penetration of chloride into concrete structures in marine environments or exposure to the use of de-icing salt for the removal of snow and ice in winter times.3 Penetration of chloride would impair the passive film locally and initiate pitting corrosion.
As a means to assess achieving intended service life on marine exposed bridge structures, corrosion of steel reinforcement was monitored on selected laboratory specimens for several years and on other specimens for a few months.
Corrosion risk due to AC interference has been known to be a possibility for decades but really came to the awareness of pipeline industry professionals starting around 2000 to 2004. Prior to that time there were some lab simulations as well as some suspected incidents in actual field situations, but many in the industry resisted accepting this as a real risk even as late as 2012 or later. Part of the reluctance to view AC interference as a genuine corrosion risk was that corrosion directly attributed to AC interference had not really been seen in the century of buried pipeline management, as well as a lack of understanding as to how this interference produced or accelerated corrosion on the pipeline.