Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
A test methodology is shown for field application of electrochemical impedance spectroscopy (EIS). The method utilizes low-cost, accessible materials to secure a temporary solution cell to the infrastructure’s coated surface. A laptop computer provides the power source and operating system for the mobile potentiostat during EIS data collection. This data provides a quantitative measure of the coating condition. The objective of this work is to incorporate EIS testing into standard coatings inspection to estimate remaining service life for the intact coating, which improves coatings maintenance planning for facility owners.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A model was developed to study the effects on the CP coupon current density and interpretation of the CP coupon data for a given holiday. The model results indicate that the most dominant factor affecting coupon is the size, followed by corrosion potential.
Liquid H2S scavengers are sometimes injected into pipelines transporting wet gas to reduce the H2S concentration below allowable values before reaching certain points of the system. In these situations, the H2S scavenger injected into the pipeline should be able to reduce the H2S concentration in the gas to the target values within a given residence time.
The overall reaction kinetics when a liquid scavenger is directly injected into a wet gas pipeline can be separated in the following three steps, which have been described in previous publications:Step 1: Transport of the liquid scavenger into the aqueous phase.Step 2: Transport of H2S from the gas to the aqueous phases.Step 3: Chemical reaction between the scavenger and dissolved H2S
Stainless steel is one of the most resistant materials to chloride environments and is an important material for water applications. Selecting a suitable stainless steel grade for water applications requires information about the performance of the candidate stainless steel grades. The limiting conditions for the pitting resistance of stainless steel depend mainly on the alloying composition of the steel and the surrounding environment.
The SSPC Surface Profile Committee has been preparing a specification for the measurement of surface profile based on the four methods described in ASTM D4417, Standard Test Methods for Field Measurement Of Surface Profile of Blast Cleaned Steel. These methods are surface comparators, surface profile depth gauges, replica tape and the stylus profile gauges.
Two concrete formulations, one of ordinary portland cement and one of pozzolanic portland cement, are compared by rebar corrosion criteria. Both formulations are candidates for nuclear applications whose durability requirement is higher than 300 years.
Fired heaters in coking service are susceptible to carburization damage, which needs to be predicted and managed to prevent unexpected downtime and expedited replacement costs. Carburization damage occurs when carbonaceous material, i.e., coke, is deposited on a steel surface and exposed to high metal temperatures; such are the internal conditions present in fired heater tubes in coking services. At these high temperatures, the carbon diffuses into the steel microstructure and increases the hardness while reducing ductility. At an advanced state, this reduction in ductility may lead to tube failure if a mechanical or thermal shock is applied. The diffusion of carbon can also cause the formation of deleterious chromium carbides in the steel microstructure, reducing the high temperature corrosion resistance in those areas.