Estimating corrosion growth rates for underground pipelines is a challenging problem. There are confounding variables with complex interaction effects that may result in unexpected outcomes. For instance, the relationship between soil conditions and AC interference is highly non-linear and challenging to model. This work expands upon prior work using a suite of machine learning tools to estimate corrosion rates. However, instead of estimating a single corrosion growth rate for a single girth weld address (GWA), this work estimates a distribution of potential corrosion growth rates. Modeling distributions provide a more effective risk-measurement framework, especially concerning high volatility or areas of severe tail risk.
This work relies heavily on machine learning and geospatial tools - particularly artificial neural networks and gradient boosted trees to estimate the corrosion rates and non-linear processes. Building upon prior work using data from a North American Operator, the models in this paper use additional variables from recent research in AC interference and microbiologically influenced corrosion to construct a higher accuracy and distribution-based model of pipeline corrosion risk.
Product Number:
51320-14640-SG
Author:
Joseph Mazzella, Thomas Hayden, Haralampos Tsaprailis, Len Krissa
Publication Date:
2020