Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
This paper will explore several variables which affect the tungsten carbide coating material deposited by a high velocity thermal spray process (HVTS) on Oil & Gas components such as valve sealing components (gate, ball, seat) and on other equipment (pistons for example on BOP’s or Blow Out Preventers). The purpose of coating these components is to gain wear/abrasion resistance as well as to impart some corrosion resistance.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Almost 20 years ago the use of Ultra High Pressure Waterjetting (UHP) in shipyards for maintenance and for offshore projects started to be pushed, due to the development of surface and moisture tolerant paint technology becoming available. This was recognized by the likes of US Navy and Petrobras at the time.
Solventborne alkyd resins are widely used in industrial coatings because of their excellent gloss, good adhesion and wetting properties as well as excellent compatibility with other resin types. In many regions, however, the consumption of alkyds is diminishing as stringent environmental regulations drive the coatings industry towards lower volatile organic compound (VOC) systems. Waterborne (WB) coating systems have replaced some solventborne (SB) alkyd paints; however, these WB coatings typically do not offer the same performance as their solventborne counterparts.
This paper considers the parameters that affect chloride induced corrosion in reinforced concrete structures and the effect of. variance in some of the parameters that influence the initiation period of chloride induced corrosion in reinforced concrete structures, on the service life estimates.
Aircraft representative galvanic test articles and witness coupons were placed out for atmospheric exposure testing at the U.S. Naval Research Lab (NRL) site in Key West, Florida. One set of test specimens was exposed to only ambient environment for a 62 day period; a second set of test specimens was exposed to both ambient environment (initial 62 days), and a short duration, twice daily, seawater spray protocol over a further 55 day period. Environmental loading was monitored using sensors that measured temperature, relative humidity, rainfall, and time of wetness (TOW), at 30 minute intervals. Following retrieval, the test articles were inspected in the laboratory using laser profilometry to characterize the spatial distribution and depth of corrosion damage. Mass loss measurement using the witness coupons was used to estimate relative corrosion rates for the two periods.
The coatings industry has made widespread use of a variety of accelerated test methods to quickly and effectively evaluate coating performance. Such accelerated methods are advantageous for predicting coating system performance where real-time testing is impractical. For example, it is not practical to evaluate coatings in harsh environments where coatings are expected to last for decades when the pace of innovation and new coating development is faster than the test time would need to be. Therefore a variety of test methods exist to evaluate coatings on metal substrates, such as steel or aluminum. Coatings that will be subjected to corrosive environments require testing in environments to simulate the effects of corrosion, typically involving exposure to moderate salt concentration and elevated temperatures for a specified amount of time. Such tests, testing environments, and evaluation methods include ASTM B117,ISO 9227, and ISO 12944, to name a few.
Since 2002, a corrosion inhibiting chemistry package has been an integral part of two specific industrial insulations. This paper explains, at a molecular level, how this package engages a two-pronged defense (physical coating and pH buffering) against CUI.
This paper summarizes the problems encountered by manufacturers and end-users relying on the available standards for materials and performance tests for zinc-rich coatings in today’s industry and presents some suggestions for improving them. The reasons and the need for developing new and only performance based specifications are also explained.
A natural gas transmission pipeline is routed through South Texas where cathodic protection levels can vary significantly throughout the year. This paper discusses the use of precision electrical resistance type corrosion rate probes and remote monitoring of the probe corrosion rate.
This article will improve the existing literature and develop the corrosion industry by expanding the knowledge of the CPHM system. I will also show one of the ways to increase the safety, availability and operational efficiency of aircraft.
EWPD of Saudi Aramco is the custodian of five large volume crude oil storage tanks with diameter of 106 m (348’) and 110 m (360’), where the crude oil is stored and transported from eastern region to western region. The tank which is being addressed in this paper is an API1 650 with floating roof. Its capacity is 1,013,000 barrels and its diameter is 110 m. This tank was built in 1978 on an oily sand pad and reinforced concrete ring wall. The inboard and sketch plates are 6.35 mm thick, and annular plates are 16 mm thick
Water, steam, and waterjetting have long been used in the conservation of historic artifacts and structures such as the R.M.S. Titanic and the Saturn V Rocket at Johnson Space Center. Integral to the conservation is the removal of loose material, reduction in salts and corrosion, retention of coatings and desirable patina, and repair of damaged areas.