Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The data produced in this study indicates that there are differences between the ICRI CSP comparator panels and TACM CSP comparator panels. Further, there are differences between taking direct measurements from known surfaces (i.e., the ICRI and TACM CSP panels) and obtaining indirect measurements from an epoxy putty casting of those same known surfaces. Therefore, it is important that the specifier indicate which method is to be used when qualitative or quantitative methods are invoked in the contract documents.
Proper bonding of coatings and linings to concrete surfaces requires proper cleaning and frequently requires the concrete to be roughened to increase the surface area. The roughness, also known as surface profile, can be imparted into concrete by abrasive blast cleaning, acid etching, or various impact/scarifying power tools. The resulting surface profile depth can influence coating/lining adhesion and performance. Coating/lining manufacturers and/or facility owners frequently specify cleaning and roughening of the concrete surface prior to product installation.
In oil refineries, one corrosion issue occurs each week worldwide that leads to a severe incident such as sudden leakages, e.g., resulting from pipe ruptures.[1] These facts emphasize the need for corrosion control in refineries. Corrosion monitoring is one important approach to utilize and can maximize equipment integrity and productivity.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The motivation for this work was to perform a comprehensive test program to investigate several commercially available composite repair systems and their interactions with cathodic protection. Multiple test methods were utilized to prove there remains a low probability of shielding for composites of typical thickness and in a typical environment. This work will also discuss how results from current industry qualification tests (such as those specified in ASME PCC-2) can be considered when making long-term decisions regarding the effects of cathodic protection on composite repairs and the pipelines on which they are installed. This paper provides an innovative approach to test and validate the interactions of cathodic protection with several commercially available composite repair systems.
Over the past few decades surface preparation standards have been implemented to provide guidance on determining the necessary surface cleanliness for specific applications. Prior to such standards, surfaces were prepared as they saw fit at the time of application which created high variability in performance of the protective coating. Since the standards were developed, the resulting performance consistency has become increased significantly. Such standards discuss a visual inspection of the steel after an abrasive material has been used to remove scale, rust, and other discoloration soils.