Search
Filters
Close

Conference Papers

View as
Sort by
Display per page
Picture for Hydrogen Trapping in Heat Treated and Deformed Armco Iron
Available for download

Hydrogen Trapping in Heat Treated and Deformed Armco Iron

Product Number: 51319-13083-SG
Author: Wolfgang Siegl
Publication Date: 2019
$20.00

The purpose of this research was to investigate the influence of microstructure on hydrogen trapping in Armco iron by analyzing the trapping ability of grain boundaries and dislocations. Hydrogen traps were introduced into the material by systematically subjecting it to various grades of heat treatment and mechanical deformation. By combining different treatment steps (annealing at different temperatures cold rolling at various deformation degrees severe plastic deformation) a wide range of different grain sizes and dislocation densities was created.SEM EBSD TEM and XRD imaging were carried out to obtain a detailed characterization of the microstructure and an estimation of dislocation densities.Electrochemical permeation experiments and thermal desorption spectroscopy (TDS) were performed to render a classification and characterization of hydrogen traps. Electrochemical permeation yields information on the diffusivity of hydrogen in the material and the influence of traps on the diffusivity. An experimental setup according to Devanathan and Stachurski was used.TDS allows the estimation of the amount of hydrogen stored in the different traps and the determination of the trap’s binding energy for hydrogen.By combining the information on the microstructure obtained from the material characterization with the results of the permeation experiments and TDS as well as a model based data interpretation the trapping efficiency of grain boundaries and dislocations in iron can be precisely determined.

Picture for Identification And Characterization Of Planktonic And Sessile Consortium Associated With Microbiologically Influenced Corrosion (MIC) In The Oil And Gas Industry
Available for download

Identification And Characterization Of Planktonic And Sessile Consortium Associated With Microbiologically Influenced Corrosion (MIC) In The Oil And Gas Industry

Product Number: 51321-16544-SG
Author: Soler Arango J./ Saavedra A.U./ Pagliaricci M.C./ Fernández F.A./ Morris W./ Vargas
Publication Date: 2021
$20.00