Copper and its alloys have excellent heat transfer properties and are widely used in industrial cooling water systems. A corrosion inhibitor, however, is needed to prevent equipment failures and to reduce the discharge of toxic copper compounds into the environment. Although azoles such as benzotriazole and tolyltriazole have been used to protect copper alloys from corrosion, they react with oxidizing halogens which are commonly used to control microbiological activity. Their reaction with chlorine, for example, produces species that are not protective to copper. The inhibitor films formed on copper also deteriorate in the presence of halogens, leading to high copper corrosion rates. A number of new azole
derivatives have been discovered that provide superior copper protection in halogenated cooling water systems. A new halogen resistant azole (HRA) has been developed which has minimal reactivity with halogens and protects copper when chlorine is present. As a result, elimination of copper-induced pitting corrosion on mild steel was also achieved. This novel material has numerous environmental benefits. Laboratory and field results are presented. Keywords: tolyltriazole, benzotriazole, triazole, chlorinated azole, halogen resistant azole, copper, low carbon steel, pitting, corrosion inhibitor, halogen ation, chlorination, environment, toxicity, chemical feed, chemical discharge.