The resistance of structural steels against corrosion in CO2-H2O and CO2-H2O-O2
atmospheres at temperatures above 550°C was observed with high magnification methods.
The test atmosphere is the basic composition of an oxyfuel coal combustion atmosphere. The
analytical information base was applied to develop reaction schemes for the oxidation of
steels. It was demonstrated that the formation of phases and the kinetics of oxidation reactions
in this atmospheres is affected by the formation of intermediate iron hydroxide and a high
carbon activity. In the temperature regime above 550°C the thermal equilibrium between H2O,
CO2 and Fe reacted and formed CO. CO triggers the formation of FeO and carbides and
increases the reaction kinetics. Porosity at the interface is established by gaseous phases
such as Fe(OH)2 or H2O. H2 formation is not limited to the steel - oxide interface but can occur
in the whole oxide scale. Examples of the experimental results were compared with a
thermodynamic approach. The objective of the work was to derive qualitative rules of the basic
corrosion reactions.
Keywords: high temperature corrosion, corrosive gases, mild steels, 9-12% Cr-Steels,
hydrogen transport, oxyfuel combustion