The most efficient construction materials for boiler water walls and superheaters in
steam power plants are ferritic and martensitic steels. In practical operation tubes are
simultaneously exposed to coThe most efficient construction materials for boiler water walls and superheaters in
steam power plants are ferritic and martensitic steels. In practical operation tubes are
simultaneously exposed to combustion gas and air/steam on their opposite surfaces. The
corrosion behaviour of ferritic-martensitic steels under such dual atmospheres is nondistinctive
and has therefore been investigated in a special designed test equipment between 500 and
620°C. The power plant conditions were simulated wi th a flowing and pressurised (80 bar)
combustion gas on the inner side of the tube which mainly consists of H2O and/or CO2. On the
outer side, the tube material was exposed to air. It was discovered that under similar
temperatures the oxides formed on the air side under dual atmosphere conditions were
significantly different to the oxide scales formed when the alloy was exposed to air only. It is
assumed that the anomalous corrosion behaviour during the dual atmosphere exposure is due
to the hydrogen transport through the bulk alloy from the combustion gas side to the air side.
Keywords: high temperature corrosion, dual atmosphere, corrosive gases, mild steels, 9-
12% Cr-Steels, hydrogen transportmbustion gas and air/steam on their opposite surfaces. The
corrosion behaviour of ferritic-martensitic steels under such dual atmospheres is nondistinctive
and has therefore been investigated in a special designed test equipment between 500 and
620°C. The power plant conditions were simulated wi th a flowing and pressurised (80 bar)
combustion gas on the inner side of the tube which mainly consists of H2O and/or CO2. On the
outer side, the tube material was exposed to air. It was discovered that under similar
temperatures the oxides formed on the air side under dual atmosphere conditions were
significantly different to the oxide scales formed when the alloy was exposed to air only. It is
assumed that the anomalous corrosion behaviour during the dual atmosphere exposure is due
to the hydrogen transport through the bulk alloy from the combustion gas side to the air side.
Keywords: high temperature corrosion, dual atmosphere, corrosive gases, mild steels, 9-
12% Cr-Steels, hydrogen transport