Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

Wet Abrasive Blasting: an Overview of Surface Cleaning Alternatives

Restoration of steel and concrete surfaces has relied heavily on sandblasting and other dry blasting techniques. For over a century, dry blasting has been an effective, but dusty approach in removing coatings, contaminants, corrosion, and residues, with emissions of silica and other abrasive or substrate particles linked to negative health and environmental impacts. 

Product Number: 51219-190-SG
Author: Wade Hannon, Bryce Gapinski
Publication Date: 2019
Industry: Coatings
$0.00
$20.00
$20.00

Restoration of steel and concrete surfaces has relied heavily on sandblasting and other dry blasting techniques. For over a century, dry blasting has been an effective, but dusty approach in removing coatings, contaminants, corrosion, and residues, with emissions of silica and other abrasive or substrate particles linked to negative health and environmental impacts. As an alternative to dry blasting, wet blasting was developed in the 1960s to minimize fugitive dust by mixing water with the abrasive spray. While effective in reducing dust, wet blasting was initially slow to catch on due to heavy water use and the problem of containing and disposing of contaminated water. Contractor familiarity with dry blasting and additional costs associated with the water and abrasives of wet blasting also limited acceptance of the newer technique. More recent developments have made wet blasting more attractive to contractors and owners facing tough restoration tasks.

Restoration of steel and concrete surfaces has relied heavily on sandblasting and other dry blasting techniques. For over a century, dry blasting has been an effective, but dusty approach in removing coatings, contaminants, corrosion, and residues, with emissions of silica and other abrasive or substrate particles linked to negative health and environmental impacts. As an alternative to dry blasting, wet blasting was developed in the 1960s to minimize fugitive dust by mixing water with the abrasive spray. While effective in reducing dust, wet blasting was initially slow to catch on due to heavy water use and the problem of containing and disposing of contaminated water. Contractor familiarity with dry blasting and additional costs associated with the water and abrasives of wet blasting also limited acceptance of the newer technique. More recent developments have made wet blasting more attractive to contractors and owners facing tough restoration tasks.

Also Purchased