Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper introduces permeation-based models used for the prediction of the unique environments of the flexible pipe annulus where the armour wires are placed in the flexible pipe structure. Test results are presented for SSC behavior of the armour wires in high pressure autoclaves simulating one to one the conditions of a flexible pipe annulus. The results are compared with tests executed at ambientpressure with both a partial pressure approach and with an approach based on H2S fugacity. The difference in results are discussed in the context of thepotential improvements possible with usingfugacity for qualification of armour wires exposed to H2S related degradational mechanisms.
The transition from partial pressure to fugacity in the assessment of acid gas activity (concentration) for the design of qualification testing of metals to be used in sour service according to MR0175/ISO 15156 entails a number of important consequences. This transition came about in the wake of oil and gas production moving off-shore to ever higher pressures and temperatures. It was recognized that multiplying total pressure by the mol fraction of H2S in the “gas phase” could no longer reflect the physicochemical realities with respect to the reactions between H2S and the metal surfaces. As a consequence it was proposed that the activity of H2S in the gas phase should be replaced by the activity (concentration) of H2S in the aqueous phase. This change in paradigm had already been accepted in the ISO Standard but not implemented. Nevertheless it stands to reason that the dissolved H2S is the active corrosion vector rather than the H2S in the gas phase.An unintended consequence of this shift in thinking lies in the fact that a very large number of Heritage Metals have been qualified for partial pressure criteria as specified in MR0175/ISO-15156 by the use of the Crolet Diagram i.e. as function of pH vs. pH2S. In order to overcome this difficulty it is proposed to generate an array of look-up tables preferably in electronic form to translate the experimental conditions from pH2S to cH2S. This translation has to be made as a function of the test parameters (to the extent they may be known) as well as the field parameters. In parallel the pH2S axis in the Crolet diagram will need to be changed to a cH2S axis. In this manner it will be possible to assign to existing test data corresponding field conditions or vice versa specific field conditions can be used to select the appropriate metal from existing test data.An additional outcome of this methodology will be a quantitative assessment of the excess conservatism practiced in the past.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.