Search
Filters
Close

Save 20% on select titles with code HIDDEN24 - Shop The Sale Now

Study on Glycol Reboiler and Surge Vessel Corrosion in Glycol Regeneration Unit

Glycol systems are widely used in gas processing plants for the removal of contaminants such as moisture from the gas. Since the majority of the piping and vessels in these plants are fabricated from carbon steel there is a high potential for corrosion. This paper provides a brief overview of some of the major corrosion mechanisms associated with Glycol regeneration unit. In addition a case study from a Try-Ethylene Glycol (TEG) regeneration system is also discussed where localized corrosion was noticed in the Glycol reboiler and surge vessel. Booster Station facility receives gas from Gathering Center for further compression and removes moisture before being exported to the refinery. This is achieved by compression of gas in multiple stages with locally provided compression equipment and processed in glycol dehydration units to remove the moisture. Water vapor removal from the gas stream is achieved by contacting the wet gas counter-currently with lean (dry) TEG in the glycol contactor column. The rich glycol having water content is routed through a pre-heating coil flash tank filters and finally comes in the Glycol reboiler. Due to the high temperature in reboiler the glycol loses its ability to hold water. Separated water is vaporized and leaves through top of the still column. The regenerated glycol flows to the surge tank and from there it is pumped to Glycol absorber. During one of the Plant Maintenance shutdowns Glycol reboiler and surge vessel were opened for internal inspection and appreciable corrosion was noticed in the top sections of the vessels. A study was initiated to find out the probable causes of the deterioration. Corrosion products were collected for XRD analyses. Also chemical analysis of lean & rich Glycol samples taken from various streams was carried out. A corrosion pattern was established along the glycol regeneration circuit which revealed mainly the low pH of Rich Glycol due to possible decomposition reaction of glycol into organic acid. Presence of Iron sulfate and various forms of iron sulfide including Pyrite Greigite and Pyrhotite (also referred to as Black Powder Derivatives) all known to expedite localized corrosion and deterioration of the metals. This paper presents the findings based on the analysis of the corrosion products and glycol samples and discusses the possible corrosion mechanisms. Recommendations are also provided to ensure the integrity and reliability of these vessels for sustainable operation. This case history demonstrates the diverse nature of the causes of Glycol related corrosion in plants and the differing approaches that have to be taken to mitigate corrosion in Glycol regeneration equipment.

Product Number: 51319-13289-SG
Author: Ali Akrouf
Publication Date: 2019
$0.00
$20.00
$20.00
Also Purchased
Picture for 00498 CORROSION OF CARBON STEELS IN MONOETHYLENE
Available for download

00498 CORROSION OF CARBON STEELS IN MONOETHYLENE GLYCOL

Product Number: 51300-00498-SG
ISBN: 00498 2000 CP
Author: J.J. Gonzfilez, M.E. Afonso, G. Pellegrino
$20.00
Picture for 05631 Pitting Corrosion in CO2/H2S Containing
Available for download

05631 Pitting Corrosion in CO2/H2S Containing Glycol Solutions under Flowing Conditions

Product Number: 51300-05631-SG
ISBN: 05631 2005 CP
Author: Jon Kvarekval and Arne Dugstad, Institute for Energy Technology
$20.00