Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
As composite repairs continue to be utilized more frequently the knowledge base of the composite manufacturers installers and the end users has continued to increase as well. The information to be discussed looks to address the “best practices” of the industry by briefly examining each major step within the repair process and highlighting key aspects that are often overlooked or not considered important. Intended for both composite repair novices and industry experts this presentation is split into three primary categories – design installation and inspection.The design portion in this presentation discusses key concerns prior to installation and includes topics such as choosing the right material for the scenario and having a sufficient design document. The next major topic of discussion involves the installation process. When something goes awry with a repair the first victim in any witch-hunt tends to be the installer. This focus on the installer will be re-examined throughout the presentation by looking at deficiencies in training methods and supporting installation documents. Lastly key points about the inspection process will be addressed such as what types of defects should be looked for and what constitutes an unacceptable defect?
Composite repairs have been applied to pipelines and piping systems for structural reinforcement after external corrosion. Such repairs may consist of glass or carbon fibers embedded in a matrix of epoxy. Typically, these repairs are hand applied using either wet lay-up systems or prefabricated rolls of composite sleeve. In some applications, pipeline continued corrosion growth under composite repairs were reported using Inline Inspection (ILI) which raises a concern about the integrity of the metallic piping under composite repairs. When continued corrosion is detected by ILI, a difficulty is typically faced due to the inability to measure pipeline remaining thickness under such repairs. To resolve this challenge, this paper will discuss multiple inspection and corrosion monitoring techniques for metal loss under composite repairs. To measure the pipeline wall thickness due to internal corrosion, one or more of the three (3) Non-Destructive Testing (NDT) technologies namely; Dynamic Response Spectroscopy (DRS), Multi-skip Ultrasonic (MS-UT) and digital radiography were evaluated and found capable. To monitor for external corrosion, a scheduled visual inspection of the composite repair would be the first inspection step. If the composite repair appears to be intact then the visual inspection would suffice and the repair should be acceptable to its design life. If the original defect is external corrosion and a scheduled visual inspection of the composite repair shows damage to the composite repair then inspection to assess the integrity of the substrate must be used before permanently fixing the composite repair. For this scenario, digital radiography or MS-UT are recommended to assess the condition of the substrate
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Composite coatings are a class of materials that are described as fiber-reinforced polymers (FRP) that consist of extremely strong tensile fibers saturated in a binding resin. From the original development as tank bottom lining materials designed to handle surface movement and corrosion, the applications for composite coatings have broadened and moved into the mainstream, with industry-accepted design codes written around their uses and applications