Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
While dedicated hydrogen pipelines have been present on the Gulf Coast of the US for decades, new application opportunities are opening up for transportation of hydrogen as a greener fuel. Some opportunities may be for newly built transportation lines while others may use existing natural gas pipelines that are converted to wholly or partially carry hydrogen. A normal part of operating a pipeline system is reconfiguring the system to add new pipes by making tie-in welds joining the new pipe to the wall of the existing pipe.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Ferric chloride corrosion testing has been used to detect the presence of deleterious intermetallic phases and non-metallic precipitates in duplex stainless steels, such as sigma, Chi and chromium nitrides, for several decades. These corrosion tests are normally specified alongside metallographic assessment and impact testing as combined measures to demonstrate that these materials have been processed and heat treated in a satisfactory manner and exhibit suitable microstructures which should give the required mechanical and corrosion (and cracking) resistance.
In pipeline corrosion management practice, one challenge is how to locate the most corrosive area along the right-of-way of an existing pipeline. Pipeline networks are complex systems containing different grades of multiphase crude oil coming from dissimilar reservoirs, which results in fluids having dissimilar chemical and physical properties along each network. The fluid starts flowing into a pipeline at a certain pressure, temperature, and associated velocity.
One of the most common ways of protecting steel assets and structures is by organic protective coating systems. The performance of such protective coating systems is assessed based on results after accelerated laboratory exposure testing, where one attempts to mimic the conditions the coatings will be exposed to under in-service conditions in a significantly shorter time frame. Such testing is also how coating systems are qualified for certain corrosivity classes and durabilities, being formalized in standards and specifications such as ISO 12944-6 and NORSOK M-501 ed. 7.
Several studies have focused in the past on the precipitation mechanism of iron carbonate (FeCO3), which is the dominant corrosion product in CO2 environments observed in the oil and gas industry. The dissolved CO2 species undergo a series of chemical reactions and react with the oxidized iron ions forming FeCO3 as the primary corrosion product. In the past, the thermodynamics of each of these reactions have been thoroughly studied and modified by incorporating the effects of temperature and non-ideality.
Pipelines are the most effective way to transport oil and natural gas, particularly for their bulk transmission over long distances. Corrosion in oil and gas pipelines occurs because of the presence of dissolved corrosive gases, such as CO2 and/or H2S, in reservoir derived brine, and contact between this brine and the steel surface. The oil phase by itself does not cause corrosion and can even inhibit corrosion.
Internal corrosion of pipelines associated with oil and gas production and refinery has always been a challenge for corrosion engineers. Over the past decades, corrosion engineers have made significant progress in developing mitigation approaches to protect these carbon steel pipelines by using corrosion inhibitors (CIs), corrosion resistant materials, and various cleaning techniques. Among all these mitigation strategies, corrosion inhibitors are considered as the first choice in handling the internal corrosion of pipelines.
In all nuclear power generating countries, high-activity, long-lived radioactive waste is an unavoidable by-product of the contribution of this energy to the global electricity generation. Disposal in deep, stable geological formations is, at present, the most promising option accepted at an international level for the long-term management of these wastes. Geological disposal relies on a combination of engineered (man-made) barriers and a natural barrier (the host rock), in order to prevent radionuclides and other contaminants ever reaching concentrations outside the container at which they could present an unacceptable risk for people and the environment.
Corrosion prevention on infrastructure subject to water immersion exposure has become more challenging due to the regulation of volatile organic compound (VOC) content in protective coatings. Legacy coating systems, such as vinyl solutions, afforded service lives of 30 to 50 years and were robust enough to endure cyclic exposure in impacted immersion service and stable against ultraviolet (UV) light exposure in atmospheric environments. Coal tar enamels are anoth er historic coating that has provided 50- to 100-year service lives as liners for small and large diameter pipes.
Due to the increasing interest of the O&G industry on high grade tubulars working at high pressures, the assessment of operational conditions of Oil country Tubular Goods (OCTG) subjected to Sulfide Stress Cracking (SSC) is of particular importance.
AMPP adopts different test methods to evaluate material susceptibility to SSC in wet H2S environments, for which, Method D according to NACE TM0177 determines a quantitative value of material resistance using a Double Cantilever Beam (DCB) specimen that can be used for design and qualification purposes. This is a crack arrest type fracture mechanics test that can be traced back to the work of Heady in 1977 in which the material resistance to propagation of environmental cracks is expressed in terms of a critical stress intensity factor, KIssc.
Precipitation hardened (PH) nickel-base alloys are frequently used as engineering materials in the Oil & Gas industry. They excel because of their outstanding combination of strength, toughness, and corrosion resistance. In that regard, alloy N07725 is of high interest as it offers better corrosion resistance than the widely used N07718, while also offering better high temperature strength than solid-solution nickel-base alloys.
Low alloy steels (LAS) are widely used in the marine and offshore oil and gas industry for various applications from bolting to large pressure containing heavy wall forgings. These materials are subject to various types of corrosion (general or uniform, pitting, crevice, etc.) and degradation in seawater environment. However, their selection for the applications, in comparison with stainless steels and corrosion resistant alloys, is justified due to their availability, manufacturability, proven service history, and lower cost.