Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Pulsed Eddy Currents (PEC) is an electromagnetic inspection method for detecting thickness variations in carbon steel and cast iron through various insulation and/or protective components. It is also resilient to liftoff variations, making it a valuable technique for Corrosion Under Insulation (CUI) assessment. The technology is widely used in the energy and petrochemical industries to detect and estimate the extent of corrosion in insulated or fire-proofed components like pipes and tanks without removing the covering.
The process of digitalization is widely regarded as one of the last remaining cost-efficiency levers left following a sustained period of pressure to reduce operating costs and enhance efficiency. A new digital platform for seamlessly integrating Corrosion and Chemical Management (CCM) program with online real time monitoring is discussed in this article, refer Figure 1. The key objective is to establish full integration of real-time corrosion data with various parameters related to corrosion control.
The range of factors affecting the susceptibility of equipment to corrosion under insulation (CUI)are numerous. Some of these factors might be controlled through better design, more robustinstallation procedures, and using better quality coatings. However, there are other risk factors such as operating temperature, material type, and environmental conditions that cannot be easily modified.
The use of Damage Mechanisms (DM’s) has been successfully developed and applied in the Oil Refiningindustry for over 20 years. A damage mechanism is a specific combination of mechanical, chemical,physical, or other processes that result in equipment degradation (piping or equipment) during operation(active or shut down). These have been defined for Oil Refining (API RP 5711). API RP 571 issupplemented with some similar and some specific individual damage mechanism, by technical reports, recommended practices, publications, and bulletins from API, as well as from the National Association ofCorrosion Engineers (NACE - now known as the Association for Materials Protection and Performanceor AMPP), and the Welding Research Council (WRC).
Corrosion is a ubiquitous phenomenon, which can have massive impacts on the functioning of industrial assets. The threat of corrosion is exacerbated in situations where regular corrosion inspections are difficult. The Virtual Corrosion Engineer (VCE) Project within Shell is intended to offer a solution to this problem by automatically assessing the corrosion rates and threat levels in assets due to a variety of corrosion mechanisms. The VCE system has been deployed in an asset progressively since 2019.