Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Most of countries store spent nuclear fuels in pools (SFP) which are built in nuclear power plants. As number of nuclear power plants and corresponding number of spent fuels increased, density in SFP storage rack also increased. In this regard, maintain subcriticality of spent nuclear fuels was raised as an issue and BSS was selected as structural material and neutron absorber for high density storage rack. BSS has better mechanical properties than other neutron absorbers which were fabricated based on aluminum alloys.
Over the past 40 years, three-coat systems consisting of zinc-rich primer, epoxy intermediate and polyurethane topcoat (ZEU) have been the preferred coating system for steel bridge structures in highly corrosive environments due to their proven performance and cost effectiveness.1-6 Each layer serves a different function: galvanic protection is supplied by the zinc-rich primer, while the epoxy intermediate coat provides barrier to water and salts, and the polyurethane topcoat resists against ultraviolet degradation, abrasion, and chemicals.
Of recent interest in the coatings world, is what to do when an abrasive blasted substrate does not meet the specified profile. For example, if the blast profile on a steel surface exceeds the specification limit, can the surface be reblasted with smaller abrasive blast media to reduce the profile into meeting the specification? At SSPC 2017 a paper was presented which addressed this scenario and found that the profile can be reduced using such reblasting process.
Protective coatings exposed to sunlight must withstand multiple environmental stresses: ultraviolet light, moisture, heat, corrosive chlorides and other salts, and atmospheric pollutants. Two decades after the publication of a sequential UV and cyclic salt spray test method in ASTM D5894, some efforts to create better and more predictive test methods have focused on delivering both UV and salt spray in a single chamber and adding additional stresses such as ozone exposure, air pressure fluctuations, atmospheric pollutants such as sulfur dioxide, and other environmental factors.
Since the dawn of mankind, or at least since the advent of the very first accelerated corrosion cabinet, it has been the goal of coatings evaluators to develop an accelerated corrosion testing protocol which reflects the real world of corrosion in totality. There have been passionate arguments promoting one or another testing protocol while demonizing others, but that one protocol has yet to be developed to everyone’s satisfaction.