Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Due to the strength, ductility, fracture toughness, corrosion resistance and especially the coefficient of thermal expansion, which is between stainless steel and low alloy steel, Ni-based alloys are used as weld metals in BWR and ABWR internals. Ni-based alloys with high chromium (Cr) concentration, such as Alloy 52 (Cr: 28-31.5 wt.%), Alloy 52i (Cr: 26-28 wt.%) and so on are expected to have higher SCC resistance than 182 (Cr: 13-17 wt.%) and Alloy 82 (Cr: 18-22 wt.%) in BWR environment.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
High-strength materials with excellent corrosion resistance and mechanical properties are highly sought after for use in light water reactor (LWR) type nuclear power plants (NPP). In western pressurized water reactors (PWR), nickel-base alloys are often the main structural materials for the steam generator (SG) tubes, while in Russian PWRs or water-water energetic reactor (VVER) high-nickel alloys, for example XH35BT (35 wt.% Ni), can be found in some primary side high strength applications, such as reactor pressure vessel internals (RVI).
Nickel-chromium alloys may be susceptible to ordering under certain thermal aging conditions, resulting in the formation of an Ni2Cr phase. The Ni2Cr phase is a superlattice which can result in significant changes of the physical or mechanical properties compared to those of the disordered alloy. Alloy 690, which usually contains a bit less than two nickel atoms per chrom-ium atom, could potentially be susceptible to long-range ordering (LRO) or short-range ordering (SRO). SRO implies that a Cr atom has a high probability of having a Ni nearest neighbor and that small order domains containing at most a few atoms exist. LRO implies that small Ni2Cr clusters exist, and although they may not be visible by transmission electron microscopy (TEM) dark field imaging, they lead to the detection ofadditional diffraction spots in selected area electron diffraction (SAED) patterns, contrary to SRO. Below the critical temperature for LRO, the formation of the long-range ordered structures is preceded by a period of short-range ordering.
HISTORICAL DOCUMENT. The purpose of this NACE International standard test method is to specify test methods and test conditions used to evaluate thermal properties, insulation values, and performance/integrity before and after thermal aging of insulative coatings. Testing for corrosion resistance is not included in this test method.
The primary intent of this standard is to specify test conditions that would give a baseline evaluation – one that would allow direct performance comparisons between different insulative coatings. This standard is designed to have practical test procedures with limited test conditions. It also includes Appendix A (nonmandatory) which describes hot plate designs, and Appendix B (nonmandatory) which describes an alternative thermal conductivity test design.