Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
A preliminary evaluation of the use of Surface Enhanced Raman spectroscopy (SERS) to monitor Biofilm. SERS was used to monitor the growth of Desulfovibrio vulgaris and Desulfovibrio desulfuricans on UNS S30400 stainless steel samples in-situ from pre-inoculation through the initial hours of growth at 37 °C and atmospheric pressure.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Corrosion inhibiting admixtures has been initially used as concrete additives to inhibit chloride induced corrosion of rebars in the late 1970`s. The first chemistry introduced to the market was based on Calcium Nitrite chemical composition, which in performance is classified as anodic inhibitor, protecting the anode site of the corrosion cell. Calcium Nitrite inhibitor`s mechanism of protection depends on the interference with the chloride complexing process by oxidizing the more easily attacked Fe2+ form of iron to the more stable Fe3+ form.
Metal corrosion associated with the growth and reproduction of microorganisms is known as microbiologically influenced corrosion (MIC). MIC causes damage to metal surfaces in several water-based industries including drinking water distribution, cooling water equipment, sewage treatment, underground pipes, bilges, piping, and tanks of maritime vessels. MIC is extensively seen in the oil and gas industry.