Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Pressure tubes, manufactured from Zr-2.5Nb, are used within a CANDU power reactor to contain the fuel bundles and coolant forming the primary pressure boundary in the core with an expected operating lifetime of 25 years. As part of the Canadian Standards Association (CSA) fitness-for-service requirements for pressure tubes, flaws or stress risers that potentially lead to cracks cannot exist in pressure tubes in operating reactors. Flaws may include: fuel bundle scratches, crevice corrosion marks, fuel bundle bearing pad fretting flaws and debris fretting flaws.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Zirconium and Zirconium alloys have been used successfully in a range of corrosive environments, both as base materials and as cladding on other backing materials. Zirconium is used extensively as fuel-rod “cladding” in nuclear reactors. In the chemical process industries, Zirconium and its alloys are used in urea production, acetic acid and vinyl acetate production, and various sulfuric, hydrochloric, and organic acid services.
This paper presents the features of the Fusion Bonded Joint sleeve and addresses its design, manufacturing, and the outcomes of the comprehensive physical testing campaign that was performed. The summary of the tests that were carried out begin from the proof of concept phase to the integrated system tests, covering both carbon steel and High-Density PolyEthylene components assembled under conditions representative of its offshore operating conditions.The present paper covers preliminary manufacturing testing phase, electro-fusion welds qualification along with the required equipment and finally full-scale testing demonstrating the sleeve is compatible with standard welding processes. An in-depth analysis of the conditions and results of the fatigue testing campaign specifics, covering both carbon steel and electro-fusion welds dynamic behavior is proposed.
As a means to assess achieving intended service life on marine exposed bridge structures, corrosion of steel reinforcement was monitored on selected laboratory specimens for several years and on other specimens for a few months.
Specifying corrosion protection for the offshore wind turbine industry in the European CEN TC219(2) committee. This comprises corrosion protection specification for external as well as internal parts of the turbine foundations.
Current fatigue assessments for the fatigue life of a plant component are usually based on methodologies that use uniaxial fatigue test data (i.e. ASME Section III, and are intended to be conservative for design and fitness-for-purpose assessments when applied to plant components and loading. This data is generated through cyclic loading of specimens at a constant amplitude, and failure is usually defined as when there is a load drop of 25% from steady state stress under strain-controlled conditions (or specimen separation for stress control). The corresponding number of cycles is then used as the definition of fatigue life for a particular strain amplitude. It is known that there are differences between fatigue behaviour in an idealised laboratory setting and in-service components which can contribute to excessive conservatism in plant assessments.