Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Using supercritical CO2 (sCO2) as a working fluid is being explored for a number of power generation technologies including fossil, nuclear, geothermal, concentrating solar power (CSP) and waste heat recovery1-7. The various sCO2 cycles are attractive because of the low critical point (31°C/73.8 bar) and the reduced work of compression compared to an ideal gas. While CO2 is sometimes described as inert, there is a long history of component degradation in subcritical and supercritical CO2 and a particular concern about internal carburization8-16.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Before full decarburization can be achieved, the Intergovernmental Panel of Climate Change (IPCC) suggests an applicable way of combining CO2-producing processes with the carbon capture, utilization, and storage (CCUS) chain. Except for permanent CO2 storage, the economics and efficiency of CCUS processes can be further improved by utilizing the CO2 byproduct in other industry areas. One of the promising methods is to use the captured CO2 for enhanced oil recovery (EOR).
Supercritical CO2 (sCO2) has many attractive features as a working fluid including its low critical point (31°C/73.8 bar) and the reduced work of compression compared to an ideal gas. Thus, it is being explored for many different applications including fossil, nuclear, geothermal, concentrating solar power (CSP) and waste heat recovery. However, CO2 environments are known to carburize steels6-20 which limits their usage to lower temperatures (450°C21 for 9%Cr steels) than in steam boilers.