Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Permanently installed transducers have improved the precision of ultrasonic inspection by orders of magnitude and provide an accurate non-invasive alternative to other corrosion monitoring methods.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Fired heaters in coking service are susceptible to carburization damage, which needs to be predicted and managed to prevent unexpected downtime and expedited replacement costs. Carburization damage occurs when carbonaceous material, i.e., coke, is deposited on a steel surface and exposed to high metal temperatures; such are the internal conditions present in fired heater tubes in coking services. At these high temperatures, the carbon diffuses into the steel microstructure and increases the hardness while reducing ductility. At an advanced state, this reduction in ductility may lead to tube failure if a mechanical or thermal shock is applied. The diffusion of carbon can also cause the formation of deleterious chromium carbides in the steel microstructure, reducing the high temperature corrosion resistance in those areas.
HISTORICAL DOCUMENT. Assessing corrosion in the field. New: long-range ultrasonic testing (UT), fiber optic strain gauges; high-resolution electrical resistance (ER), a new method of hydrogen probe monitoring, and extended-analysis coupons.
This trial demonstrated that ultrasonic monitoring can be applied to detect changes in real-life corrosion rates in a short time (3 weeks). This short feedback time can be used to give advanced warnings on corrosion issues on bends, T-pieces or other areas.
Over the past decades cost pressure in oil refining has increased, especially in Europe where the consumption of oil products is decreasing over time. Refineries are investigating ways to increase margin and, given that they account for around 80% of total refinery expenditure, reduction of crude oil cost is a key factor. One way of doing this is to purchase cheaper and generally less desirable crude from global markets.
An increase in useful life expectancies for structures requires the stringent process control of applied protective coatings. Evaluating the uniformity of the protective coating thickness is a critical quality component. Solutions for meeting industries’ ultimate goals of reducing costs, lessoning errors, and increasing quality will be discussed in the following coating thickness measurement overview.
Prevention of corrosion on submerged surfaces, particularly ship’s hulls, is a challenging process. Beyond the corrosive effects of seawater, biofouling will start to accumulate, and if left unchecked, can potentially damage the coating reducing its anti-corrosive properties. In stationery applications, the biofouling may be of little immediate significance, but in the case of vessels, biofouling will greatly increase hull resistance, leading to reduced speed, greater fuel consumption and emissions, as well as enabling the transfer of alien species as the vessels travel the globe.