Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper summarizes results of a joint industry program (JIP) to address ammonium bisulfide (NH 4 HS) corrosion in H 2 S-dominated alkaline sour waters typically found in refinery services such as the reactor effluent air cooler (REAC) systems of hydroprocessing units.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Variables that influence extent of vaporization of injected wash water & subsequent impact on minimizing the risk of corrosion. Consequences of liquid maldistribution in reactor effluent air coolers (REACs). Selecting between single and multiple injection points.
2205 Duplex Stainless Steel (DSS) UNS S31803 has been used in refinery hydroprocessing unit reactor effluent air coolers (REACs) since the mid 1980’s (1). 2205 was selected due to its good resistance to ammonium bisulfide (NH4HS) corrosion and perceived resistance to chloride stress corrosion cracking because it was an economical choice when compared to higher nickel alloy alternatives such as Alloy 825 or Alloy 625.
Many of these DSS REACs have remained in service successfully, with some in service for more than 30 years.
The super-austenitic grade Alloy 35Mo has recently been developed and already been installed in shell-and- tube heat exchangers globally. The grade has shown excellent results in different laboratory tests. However, the grade must also be tested in industrial environments, which will take some time until results can been obtained.
Gas Oil Hydrotreating Unit uses a catalytic hydrotreating process employing a selective catalyst and a hydrogen-rich gas stream to decompose organic sulfur, oxygen and nitrogen compounds contained in the feed. The products of these reactions are the contaminant free hydrocarbon, along with H2S and NH3. Other Treating reactions include halide removal and aromatic saturation. Reactor effluent is cooled in series of Combined Feed Exchangers followed by REAC for product separation. The reactor effluent system is prone for corrosion and fouling due to salting of NH4HS and NH4Cl. Most of the failure analysis studies and literature available in public domain regarding reactor effluent corrosion deals with the corrosion in the REAC and its outlet piping.