Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
A new innovative high performance, zero VOC acrylic topcoat offers excellent corrosion resistance, weathering durability, early moisture resistance, freeze thaw resistance and dirt pick up resistance that is comparable to high VOC commercial acrylic. The performance properties of this zero VOC acrylic topcoat are compared to a high VOC commercial acrylic topcoat used in protective coating applications.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Typical austenitic stainless steels like 316L (S31603) contain chromium, nickel, and, optionally, molybdenum as major alloying elements. These are required to provide their beneficial properties, which include e.g. very high corrosion resistance and high ductility and toughness, yet showing comparably low strength and hardness. General corrosion resistance is primarily achieved by the element chromium, which causes formation of a thin but dense chromium oxide layer on the surface, when the amount of chromium dissolved in the metallic matrix is larger than approximately 10.5 wt%.
This study investigates the influence of thermal cycle as a result of repeated welding heat input on the mechanical and microstructural properties of the SA516 Gr 65 steel plates weldment in as-welded condition. The test specimens used were having an identical joint design, welded with submerged arc welding (SAW) process. Three different heat inputs of 0.96kJ/mm (low heat input), 1.5kJ/mm (medium heat input) and 3.58 kJ/mm (high heat input) were used for welding three individual specimens. All weld longitudinal tensile testing, Charpy V-notch impact test and weld metal & heat affected zone (HAZ) microstructural testing were done. The work shows that low heat input (LHI) produced welds with highest yield, tensile strength and toughness in the weld metal whereas high heat input (HHI) resulted in decrease in yield, tensile strength and toughness in the weld metal. Increased level of acicular ferrite and a fine grain structure in weldment were achieved with LHI, while the HHI produced coarse grain structure in the weldment and in the HAZ.
Duplex stainless steels (DSSs) are based on the Fe-Cr-Ni system and are constituted of 30 to 70 % ferrite and austenite. They combine high tensile strength, good toughness, weldability, and excellent corrosion resistance including stress-corrosion cracking and resistance to localized corrosion.1-3 DSSs can be classified according to the Pitting Resistance Equivalent Number (PREN = Cr + 3.3 Mo + 16 N) in lean duplex (PREN= 22-27), standard (PREN = 28-38), super duplex (PREN = 38-45) and hyperduplex (PREN > 45).
AM brings significant benefits in better performance, inventory management, and lifecycle cost reduction to the Oil & Gas industry. Both manufacturers and users are working towards AM qualification and standardization in order to realize and sustain these benefits. Starting at the product level, the goal is to ensure the product is sound in its form, fit, and function, and free from macroscopic (surface, sub-surface, internal) anomalies deleterious to its performance. Product qualification is supported by a foundational metallurgical or AM material qualification.1
Corrosion is a durability concern for any unprotected structural steel from its exposure environment and coatings are widely used for corrosion protection. Zinc-rich primer-based three-coat (ZRP) systems are the most widely used for structural steel, since 1980’s. However, these coating systems often require regular maintenance. So, there is always interest to develop durable novel coating systems to reduce the maintenance cost.
A decarbonized energy system is underway worldwide. The Paris Agreement goal is to keep global warming “below 2 degrees Celsius above preindustrial levels, and to pursue effort to limit the temperature increase even further to 1.5 degrees Celsius.” To achieve this long-term temperature goal, big changes are needed in the ways energy is produced, distributed and storage.
Zinc rich primers, both organic and in-organic coatings, are extensively used in the marine and offshore industry. The beneficial effect of zinc-rich primer on the longevity of protective coatings is primarily assumed to be due to a cathodic protection mechanism. During the 60’s and the 70’s zinc rich epoxy primers dominated the market.