Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

Mechanical Performance of Nano-Particles Enriched Zinc Rich Coatings

Corrosion is a durability concern for any unprotected structural steel from its exposure environment and coatings are widely used for corrosion protection. Zinc-rich primer-based three-coat (ZRP) systems are the most widely used for structural steel, since 1980’s. However, these coating systems often require regular maintenance. So, there is always interest to develop durable novel coating systems to reduce the maintenance cost. 

Product Number: 51219-189-SG
Author: Saiada Fuadi Fancy, Md Ahsan Sabbir, Kingsley Lau
Publication Date: 2019
Industry: Coatings
$0.00
$20.00
$20.00

Corrosion is a durability concern for any unprotected structural steel from its exposure environment and coatings are widely used for corrosion protection. Zinc-rich-primer-based three-coat (ZRP) systems are the most widely used for structural steel, since 1980’s. However, these coating systems often require regular maintenance. So, there is always interest to develop durable novel coating systems to reduce the maintenance cost. The durability and long-term performance of coating systems strongly depend on its bond to the steel substrate and proper surface preparation. Nanoparticles are being considered in the development of durable coating systems due to their beneficial mechanical properties. The purpose of this study was to evaluate the mechanical performance of a nanoparticle enriched zinc rich epoxy coating (NPE-ZRP) when applied with non-ideal steel substrate surface conditions. Different levels of preexposure conditions included high humidity, surface moisture and salt contamination with improper surface cleaning. The pull-off strength test was chosen to validate mechanical performance of the coating after exposure. The wetting contact angles for different reference liquids were measured and used for the calculations of the surface free energy, which were subsequently compared to visual and pull-off testing.

Corrosion is a durability concern for any unprotected structural steel from its exposure environment and coatings are widely used for corrosion protection. Zinc-rich-primer-based three-coat (ZRP) systems are the most widely used for structural steel, since 1980’s. However, these coating systems often require regular maintenance. So, there is always interest to develop durable novel coating systems to reduce the maintenance cost. The durability and long-term performance of coating systems strongly depend on its bond to the steel substrate and proper surface preparation. Nanoparticles are being considered in the development of durable coating systems due to their beneficial mechanical properties. The purpose of this study was to evaluate the mechanical performance of a nanoparticle enriched zinc rich epoxy coating (NPE-ZRP) when applied with non-ideal steel substrate surface conditions. Different levels of preexposure conditions included high humidity, surface moisture and salt contamination with improper surface cleaning. The pull-off strength test was chosen to validate mechanical performance of the coating after exposure. The wetting contact angles for different reference liquids were measured and used for the calculations of the surface free energy, which were subsequently compared to visual and pull-off testing.

Also Purchased
Picture for 07007 ADVANCEMENT IN ZINC RICH EPOXY PRIMERS FOR CORROSION PROTECTION
Available for download

07007 ADVANCEMENT IN ZINC RICH EPOXY PRIMERS FOR CORROSION PROTECTION

Product Number: 51300-07007-SG
ISBN: 07007 2007 CP
Author: Claus E. Weinell and Soeren Nyborg Rasmussen
Publication Date: 2007
$20.00