Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
An enhanced biocide selection evaluation that extends past the traditional selection process to include stability and performance with a larger range of fracturing additives, environmental conditions, and secondary biocidal properties.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Microbial contamination in the development of unconventional oil and gas formations can cause numerous problems, including formation plugging, microbial induced corrosion, and well souring, all of which can have a negative effect on well productivity and quality of oil and gas. The most common method to control microbial contamination during stimulation of unconventional oil and gas formations is through the use of biocides. Traditional oil and gas biocides such as glutaraldehyde/quaternary ammonium blends struggle to provide effective microbial control under the severe conditions encountered during stimulation of unconventional oil and gas formations.
Biocides are used in hydraulic fracturing operations to control the growth of contaminant microorganisms that lead to corrosion, souring, and conductivity loss.1,2 A variety of biocides are utilized and can be classified by mechanism of action, speed of kill, and the length of residual activity.In general, rapid-acting biocides such as chlorine dioxide (ClO2) and DBNPA (2,2-dibromo-3- nitrilopropionamide) inactivate bacteria quickly but have little to no residual activity. Glutaraldehyde (Glut) reacts more slowly and provides some residual activity, particularly at lower wellbore or reservoir temperatures.
Experimental work has demonstrated that novel combinations of the preservative 1,3-Dimethylol-5,5-dimethylhydantoin and tetrakis hydroxymethyl phosphonium sulfate (THPS).can provide synergistic biocidal performance against commonly found oilfield bacteria.
A new era of natural gas exploration is spreading across the continental United States and Canada. Through a technique called hydraulic fracturing (fracking), huge deposits of oil shale, like the Marcellus and Utica deposits that extend from the Appalachians and into Canada, are now producing enough gas to meet North America’s needs for the next 14 years. The boom in gas exploration has opened up new markets for pipeline and joint coating materials to provide corrosion protection.