Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Electrochemical protection techniques have provided owners of reinforced concrete infrastructure a highly effective option for controlling reinforcement corrosion. This is particularly so for coastal assets, such as wharves and bridges which are exposed to seawater and in turn the corrosive effects thatfollow as chlorides migrate through the concrete cover to the reinforcement. Protection technologies have evolved considerably over the past 30 years in the Australian market.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Compared to other polymeric materials, silicone offers greater performance in harsh environments. Inherently silicone possesses a large coefficient of thermal expansion (CTE), low modulus, and a low glass transition temperate (Tg). These attributes allow it to maintain elastomeric properties for continuous operation when exposed to extreme heat, cold, and/or UV radiation. Durability is the reason silicone materials are frequently employed as coatings and sealants.
Extending service life of an offshore wind tower brings value to the owner and has the added benefit of reducing environmental impact. Arguably the biggest threat to service- life is degradation. When constructing with steel, corrosion is the threat to mitigate. Coatings formulated with zinc dust have been the primary strategy for protection. Zinc dust incorporated into silicate resins is considered an inorganic zinc coating. In recent years silicate finishes made without zinc have entered the market to create a two- coat inorganic system offering unmatched corrosion protection in a finish with various color options. The silicate resin is low carbon and won’t contribute to microplastic accumulation in the ocean. This paper will explain what a two- coat inorganic corrosion resistant system is, how it works, what it looks like and most importantly how it extends the life- cycle of wind towers by inhibiting corrosion for decades.
Poor performance of materials…is why…more realistic application conditions are needed. An ultra-tolerant material, compatible with flash rust, humidity, poor profile and cold application conditions, potentially with Ultra High Pressure (UHP) water jetting, is presented in this paper.
The global cost of corrosion is estimated to be US$2.5 trillion, which is equivalent to 3.4% of the global GDP (2013). By using available corrosion control practices, it is estimated that savings of between 15 and 35% of the cost of corrosion could be realized; i.e., between US$375 and $875 billion annually on a global basis. These costs do not include individual safety or environmental consequences which can occur due to near misses, incidents, forced shutdowns (outages), accidents, etc.