Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Test results for four alloys in six different sour environments are presented. Alloys 625, 825, 316L and carbon steel were testing in sour gas with varying exposure to moisture at 280°C. Corrosion rates for each alloy over a 30 day period are measured from mass and thickness changes.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
2205 Duplex Stainless Steel (DSS) UNS S31803 has been used in refinery hydroprocessing unit reactor effluent air coolers (REACs) since the mid 1980’s (1). 2205 was selected due to its good resistance to ammonium bisulfide (NH4HS) corrosion and perceived resistance to chloride stress corrosion cracking because it was an economical choice when compared to higher nickel alloy alternatives such as Alloy 825 or Alloy 625.
Many of these DSS REACs have remained in service successfully, with some in service for more than 30 years.
Recently, the nickel-based alloy UNS N08827, commercially known as VDM ® Alloy 825 CTP(3), has been presented to the oil and gas industry as an alloy that has been developed to fill in the existing gap between both UNS N08825 and UNS N06625 in terms of localized corrosion resistance. It is a solid-solution nickel alloy with chemical composition similar to UNS N08825, except for its doubled molybdenum content and the no addition of titanium.