Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Experiments were carried out in a 7.5L autoclave with two combinations of CO2 partial pressure and temperature and different H2S concentrations. Corrosion behavior of specimens was evaluated using electrochemical measurements and surface analytical techniques.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The main objective of this research was to evaluate the performance of different commercial inhibitors with emphasis on the impact of high flow velocities under highly corrosive conditions.
This study used a synthetic solution to simulate weak black liquor environments (5 g/L sodium hydroxide and 20 g/L sodium sulphide) at 160°C to perform laboratory experiments.
Results from novel transparent autoclave experiments. Carbon steel corrosion coupons were exposed to impurities levels within established specifications at simulated transport conditions (25 °C and 10 MPa of CO2).
Cyclic potentiodynamic polarization tests were performed with statistically designed compositional test matrices to determine and optimize the nitrite inhibitor requirements needed to safely store and process the return stream in waste tanks.
Electrochemical testing was utilized determine the borderline conditions for pitting to optimize the chemistry control program for underground double shell tanks containing liquid radioactive waste.
Nuclear wastes are stored in large, underground carbon steel storage tanks. Carbon steels can be susceptible to localized corrosion (e.g., pitting) and stress corrosion cracking (SCC). This paper presents work done to evaluate changes in SCC susceptibility over time.
Atomic hydrogen can enter metallic microstructures from deposition processes like Cr plating or phosphatizing, chemical and electrochemical pickling treatments, during welding operations if the humidity of consumables is too high, by cathodic processes resulting from corrosion phenomena or contact with high pressure gaseous hydrogen. According to different chemical-physical mechanisms, atomic hydrogen can enter the metallic structure resulting in damages of various forms, such as HIC (hydrogen induced cracking), SOHIC (stress oriented HIC), delayed fracture and hydrogen embrittlement (HE).
In this study a coupled multielectrode array sensor (CMAS) is used for coating and pretreatment evaluation on carbon steels. The preliminary testing results are summarized and discussed for further application.
In recent years, unexpected failure caused by sulfidation corrosion have increased presumably because many refineries diversify the crude oils to process them. Crude oils contain corrosive species such as sulfides, nitrides, chlorides, organic acids and chemical additives. In these corrosive species, sulfides in the fluids cause sulfidation corrosion operating at temperature above approximately 260 °C1.
Mono-ethylene glycol (MEG) is often injected in offshore gas transport lines to prevent the formation of gas hydrates (crystalline solids comprised of water and gas that form at low temperatures). Glycol is one of the most effective products for this purpose and acts to further lower the temperature at which hydrates would normally form. As such, it is called a thermodynamic inhibitor.