Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This work includes research on the effect environment and corrosion protection systems (chromate coatings) on legacy aluminum alloy UNS A97075 with respect to environmentally assisted fatigue damage.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Chromate conversion coatings are relied upon to ensure the long-term corrosion performance and surface electrical properties of aluminum alloys, as well as to improve the bond strength and adhesive properties of organic coatings and adhesives. Chromate based chemistries have been all but eliminated in Europe, and it is believed the Environmental Protection Agency (EPA) will stage their elimination in the USA within the next 5 to 10 years. The development of chemistries to replace chromate has been a hot area of research for over 30 years, and now a series of commercial alternatives have become available. These new coatings differ in their chemistry and performance characteristics, as well as their functional limitations, from chromate.