Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Organic coating systems for protection against internal corrosion of pipelines are important to maintain integrity of oil and gas infrastructure. The present investigation focuses on evaluation of protective properties of a set of multiphase coating systems in the environment encountered inside of off-shore natural gas pipelines.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Lean duplex stainless steel (LDSS) can provide mechanical properties similar to that of duplex stainless steel (DSS) and is less expensive. The focus of this work was to assess the stress corrosion cracking (SCC) and SCC susceptibility of DSS and LDSS in chloride-containing sour water conditions.
Crevice corrosion affects the integrity of stainless steels used in oil and gas components exposed to seawater. In this work, the crevice corrosion resistance of a 22-Cr duplex and a 25-Cr super duplex stainless steels (UNS S31803 and UNS S32750, respectively) were investigated.
This paper presents an expanded laboratory test database on critical corrosion modes for UNS R55400 pipe exposed to relevant oilfield production environments which include sour well fluid brines, a heavy chloride/bromide brine well completion fluid, injected methanol, organic acid- and HCl-based well acidizing solutions, and seawater.
Oxidation behavior of a commercial, cast Ni-base superalloy was studied in air-SO2 mixture, simulating combustion gases from high sulfur containing fuels. Experiments at 1050°C for up to 500 hours duration. The studied alloy was characterized with a number of analytical methods including SEM / EDX and GDOES after different oxidation times.
In a bioinspired approach, we have used (as scale inhibitors) several non-toxic, “green” polyelectrolytes that possess “active” chemical moieties, capable of stabilizing silicic acid, for a prolonged time period. These additives include either neutral or charged polymers that stabilize two soluble forms of “Si”, silicic and disilicic acids.
Hydrogen Induced Cracking (HIC) can be a major issue for line pipe exposed to sour environments. In this study, influence of the test solutions on HIC evaluation was investigated from the view point of corrosion. Electrochemical measurements were employed to compare corrosion behavior of line pipe steels between the 0.93N acetate buffer solution and the conventional 0.05N acetate solution.
Fusion bonded epoxy (FBE) coatings protect the underlying metal from corrosion. The lack of research on the microbial impact of pipeline coating failures leaves a significant knowledge gap. We analyzed two FBE coating samples from buried steel transmission pipelines with unusually rapid external pitting.
The internal corrosion of pipeline steel in the presence of hydrogen sulfide (H₂S) represents a significant problem in oil and gas industry. In the present study, experimentation was conducted to better resolve the direct reduction of H₂S while minimizing the effect of the anodic reaction by using a passive stainless steel working electrode.
Development of a new High Charge Polymer (HCP) for cooling water applications. This polymer provides superior deposit control in stressed applications where high temperature, hardness, phosphate, pH and metals contamination can reduce dispersant performance. Reviews lab work. Describes refinery field trial results. Active fouling was mitigated.c
This paper focuses on short-term oxidation testing (1,000 hours) of Ni- and Fe based heat-resistant alloys in flowing air with varying cycle frequencies (1, 10, and 168 hours) at 982 °C. The alloys tested were ranked based on weight change behavior and metal recession measurements.