Top of line corrosion (TLC) is a degradation mechanism predominantly encountered in the oil and gas industry. Initiation of TLC requires a stratified flow regime with wet gas transportation and the existence of a significant temperature gradient between the hot fluid inside the pipeline and the colder external environment.1,2,3 This temperature difference results in the condensation of water vapor, present in the gas phase, onto the cooler, upper internal section of the pipeline. The condensed water can be particularly aggressive as it lacks dissolved salts (e.g. bicarbonates), some of which are able to buffer the bulk electrolyte, increasing the pH and suppressing corrosivity.4,5,6 The absence of such salts typically results in a very low pH condensate (<pH 4), often containing dissolved acidic gases, such as carbon dioxide (CO2) and hydrogen sulfide (H2S), and also acetic acid (HAc), which can cause severe degradation, particularly in the form of localized corrosion.5