Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Special enhancements: (1) use the high temperature reference electrode - Ag/AgCl; (2) define the test temperature measurement procedure; (3) check the accuracy of the reference electrode; (4) develop an inexpensive anode isolation method.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Corrosion control of buried assets usually involves a double shield: a coating system as a physical insulation barrier, and a cathodic protection system as an additional ad hoc defense. Detection of a corrosion spot at the coating defect stage is the only way to identify the threat before significant metal loss occurs. Furthermore, detection of defects in the coatings of such assets is especially important, since large defects, if left unrepaired, will not only leave the asset locally prone to corrosion, but also drain and weaken the cathodic protection effectiveness for the entire structure. Therefore, identification and characterization of coating anomalies is critical for the integrity of buried assets.
The spread of disbondment or corrosion from a scribe or holiday in a coating film, for which the terms rust creepage or undercutting are used in this paper is an important mechanism of coating degradation. The mechanism of rust creepage has been well studied by several authors who concur that the mechanism is driven by electrochemical reactions15. The reactions occurring at the discontinuity in the coating (scribe or holiday) involve an anodic reaction in which iron is dissolved. Adjacent to the anodic region, under the coating, a cathodic reaction occurs in which oxygen is reduced to hydroxyl ions.
HISTORICAL DOCUMENT. The purpose of this NACE International standard test method is to specify test methods and test conditions used to evaluate thermal properties, insulation values, and performance/integrity before and after thermal aging of insulative coatings. Testing for corrosion resistance is not included in this test method.
The primary intent of this standard is to specify test conditions that would give a baseline evaluation – one that would allow direct performance comparisons between different insulative coatings. This standard is designed to have practical test procedures with limited test conditions. It also includes Appendix A (nonmandatory) which describes hot plate designs, and Appendix B (nonmandatory) which describes an alternative thermal conductivity test design.
Organic coating is the most widely used method of corrosion protection. its corrosion protective abilities depend on physical, chemical and mechanical properties including adhesion to a substrate and essential barrier properties against corrosive species, such as water and oxygen. The durability of corrosion protection coatings is evaluated based on their effectiveness in providing long-term protection to metallic substrates when these materials are exposed to aggressive corrosion environments.