Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The objective of the present study was to evaluate the effect of alloying elements (Cr, Mo and Cu) on the corrosion behavior of low carbon steel in CO2 environments. Six samples were prepared with varying Cr content from 0 to 2 wt.% and with added 0.5 wt.% of Mo and Cu.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Data were collected to study the effect of an imidazoline based inhibitor on reducing CO2 corrosion of low carbon steel in erosive environments. Lower erosion-corrosion material loss was measured with inhibitor than with the protective iron carbonate scale.
This research was to determine if an iron carbonate (FeCO3) layer can be effective for prevention of CO2 corrosion of steel rebars, associated with production and use of carbonated calcium silicate cement-based concrete.
Carbon steel exposed to aqueous CO2 environments can be conducive to the formation of naturally protective corrosion products, namely iron carbonate (FeCO3). Understanding how FeCO3 develops across a range of conditions is a critical step in enabling the optimization of corrosion products as a natural form of corrosion mitigation. To date, most studies investigating FeCO3 development focus on near-neutral pH solutions conducive to fast precipitation while test pressures are generally atmospheric to simplify in situ electrochemical measurements.
Carbon dioxide (CO2) saturated brines containing high levels of calcium are commonly encountered across the energy sector: from hydrocarbon recovery to the harvesting of geothermal energy and re-deposition of CO2 for permanent storage. These brines originate in deep underground reservoirs at elevated pressures and temperatures. Despite susceptibility to corrosive attack under these conditions, carbon steels are the preferred choice of pipeline materials for such processes, attributable to their low cost, availability and ease of manufacture.