Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Organic coatings protect the underlying metallic substrate against corrosion by acting as a barrier to corrosive species such as water, ions, and oxygen. Unfortunately, coatings might contain defects and could degrade or disbond under some environmental conditions, resulting in favorable pathways for such corrosive species.
Barrier protection is one of the modes by which intact coatings provide protection to metal substrates through a reduction of the transport of materials, ions, or charge.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper compares and contrasts the accelerated laboratory autoclave (NACE TM0185) performance at 300°F (149°C), and 250 psig, of eight polycyclamine cured epoxy linings. The latter were tested for tank, vessel and pipe spool applications in the oil and gas industry. Five of the linings were commercially available and three were experimental. A modified amine cured epoxy was also evaluated in the study, a lining used to transport shale oil in railcars at temperatures up to 200°F (93°C).
The efforts to lower automotive component weight to make cars more fuel efficient has increased the demand for aluminum alloys. In these applications, substantial amounts of heat are generated due to engine combustion, making it necessary to cool the engine systems. Metals in an engine application will rely on coolant to transfer heat. Corrosion behavior is another consideration for metals. Aluminum alloys, similar to the metals they are replacing, are sensitive to corrosion, especially in an aqueous alkaline environment.
In 1950s, as an important measure to improve the corrosion resistance of base metal, internal coating pipes was first applied to sour crude oil and natural gas pipelines [1]. Among the coating systems, FBE coating has good impact resistance, bending resistance, high bonding strength, good resistance for acid, alkali, salt, oil and water fluid. The coating can reduce the internal surface roughness friction resistance of piping & pipeline to reduce project investment.
One of the most common ways of protecting steel assets and structures is by organic protective coating systems. The performance of such protective coating systems is assessed based on results after accelerated laboratory exposure testing, where one attempts to mimic the conditions the coatings will be exposed to under in-service conditions in a significantly shorter time frame. Such testing is also how coating systems are qualified for certain corrosivity classes and durabilities, being formalized in standards and specifications such as ISO 12944-6 and NORSOK M-501 ed. 7.
A two-year FHWA in-house study was launched in November 2006 to evaluate various coating materials that can be applied as one-coat systems to steel bridges. A total of eight test materials plus a 3-coat system and a 2-coat control system were applied over near-white steel test panels (SSPC-SP10). Their performance is being monitored using electrochemical impedance spectroscopy, various surface failures, rust creepage at scribe, adhesion, and change of color and gloss.
Biomass-derived pyrolysis oils (bio-oils) are recognized as a renewable energy source that couldaid in the reduction of fossil fuel use. Bio-oils exhibit higher corrosivity to common ferrous alloys because the oils contain organic acids and water. A series of corrosion studies were previously performed to determine the corrosion rates of ferrous alloys exposed in bio-oils for a quantitative evaluation of the material compatibility. The key information from these previous studies is that ferrous alloys with more Cr, Ni, and Mo are needed for compatibility with bio-oils.
Saline Water Conversion Corporation (SWCC) is the largest producer of water by its different water desalination plants distributed around the kingdom. Produced water is transmitted through underground pipelines. These pipelines are more than 8,000 KM in length and varying diameter from 8 thru 75 in.
A portable electrochemical noise measuring device has recently been developed to evaluate the corrosion-protective properties of anti-corrosive coatings in-service.
Traditionally, oil recovery operations are subdivided into primary, secondary and tertiary stages. EOR is commonly classified as tertiary recovery, where gases, liquid chemicals and thermal energy can be used to enhance the displacement of reservoir fluids. Different sources divide EOR into two to five categories, one particular method, polymer flooding, is based on increasing the fluid viscosity by adding a polymer to the injected water. Polymer EOR is a mobility-control process using a polymer-augmented waterflood, typically a solution of partially hydrolyzed polyacrylamide (HPAM) or polysaccharides, which is injected to displace oil towards production wells.
The Bureau of Reclamation’s Materials Engineering Research Laboratory has been evaluating polyurethane pipe linings for severe immersion exposure, specifically for outlet works and penstock linings. Polyurethanes have several advantages over other coatings, such as application temperature range, faster cure times in cold temperatures, rapid return to service, coat large surface area rapidly, low viscosity (i.e., accommodates pumping over longer distances), and greater impact resistance.