Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The subject of hydrogen stress cracking of various high strength Nickel alloys has recently been reported by others. Comparisons of results for different test methods including Slow Strain Rate Testing (SSRT) and Incremental Step Loading (ISL) were performed.A new Ni-Cr-Mo-Fe alloy known as ATI 830™ alloy (N08830) was recently tested to determine its resistance to Hydrogen Induced Stress Cracking (HISC) simulating conditions arising during cathodic protection in a subsea environment.The unique set of test methods and conditions included SSRT and ISL all using precharged specimens with ongoing continuous charging during testing. Test specimens utilized different geometries including smoothed and notched along with round and rectangular cross sections.The paper draws key conclusions based on comparisons of test methods and also compares N08830 alloy results to other high strength CRA’s used in Oil and Gas subsea production equipment.
The high strength and corrosion resistance of nickel-chromium alloys such as Alloy 718 and nickel-iron-chromium alloys such as Alloys 945 and 945X make them particularly good candidates for use in demanding environments in the upstream oil and gas industry. These materials generally perform well where resistance to sulphide stress cracking and chloride stress corrosion cracking is required. However whilst these alloys are considered ‘NACE compliant' environmentally-assisted failures can still occur.It is generally accepted that for hydrogen cracks to initiate there must be a critical combination of stress susceptible microstructure and hydrogen concentration. In this project the effect of microstructure is explored by heat treating Alloy 718 945 and 945X to standard and non-standard conditions. Tensile specimens were slow-strain-rate-tested in air and under CP to explore sensitivity to hydrogen embrittlement. Finally the effect of a severe stress concentration in the form of a sharp notch was used to determine whether there is an enhanced susceptibility to hydrogen embrittlement due to the presence of local stress raisers. The results are compared with tests undertaken by other authors under various hydrogen-charging conditions.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A test project to examine the susceptibility of Hydrogen Induced Stress Cracking (HISC) has been executed. In this project hydrogen charged samples of Alloy 718 and Alloy 725 have been exposed under tensile stress to establish critical stress levels for initiation of HISC.
Crack growth rate (CGR) behavior of UNS N07718 was investigated as a function of K-rate in two different environments under cathodic potentials, a mild environment containing 3.5wt% NaCl and a more aggressive environment containing 0.5M H2SO4.