Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
This article will improve the existing literature and develop the corrosion industry by expanding the knowledge of the CPHM system. I will also show one of the ways to increase the safety, availability and operational efficiency of aircraft.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The production of sodium hydroxide (NaOH) can be carried out by the membrane, diaphragm or mercury process. The biggest difference between these processes, with regard to fluid composition, is that the caustic soda (NaOH) produced by the diaphragm process has a higher chloride content during its production process.
Such aggressiveness in the environment generally calls for the use of special materials to increase the useful life of the equipment and avoid unscheduled shutdowns in the production unit.
EWPD of Saudi Aramco is the custodian of five large volume crude oil storage tanks with diameter of 106 m (348’) and 110 m (360’), where the crude oil is stored and transported from eastern region to western region. The tank which is being addressed in this paper is an API1 650 with floating roof. Its capacity is 1,013,000 barrels and its diameter is 110 m. This tank was built in 1978 on an oily sand pad and reinforced concrete ring wall. The inboard and sketch plates are 6.35 mm thick, and annular plates are 16 mm thick
Although computational methods have been separately developed to predict corrosion and fatigue crack growth rates for metallic structures, challenges remain in implementing a methodology that considers the combined effects. In this work the output from a galvanic model is used to determine the spatial distribution of corrosion damage; providing a guide for the location of discrete corrosion damage features that can be analyzed using stress fields from structural models. In order to build confidence in this approach the galvanic models are validated by comparing predicted results to surface damage measurements from test specimens subject to ambient atmospheric exposure. There was good comparison between the predicted spatial distribution of corrosion damage and the measured surface damage profiles obtained from the galvanic test specimens. Following this exercise novel computational corrosion damage features were developed to represent simplified cracks shapes emanating from corrosion pits. Stress intensity factors (SIF) for these newly developed hybrid pit-crack features were determined and these solutions compared to cases where the pit is assumed to be an equivalent crack. The impact of the local, cavity induced stress field, on the SIF solutions is discussed. Building on these findings a fatigue crack growth simulation was performed using an initial flaw emanating from a hemispherical cavity (corrosion pit) located at the edge of hole in a plate. A reasonable comparison, of the predicted number of crack growth cycles, to available experimental test results was achieved.
Protecting and maintaining assets in highly corrosive environments has been a challenge for centuries. Assets that require precision coating removal around compromised structures require a precision tool that does not impact the structure leading to failure. Removal of any metal or damage to surfaces must be avoided in these scenarios, which disqualifies highly abrasive removal methods such as blast cleaning, needle-gunning, and water-jetting.
Cathodic Protection (CP), when properly applied, is an effective technique to minimize the natural corrosion process that occurs on pipelines, tanks, and other buried steel structures. To maintain effective CP coverage with minimal current demand, the structure must be well-isolated from earth for DC current flow. This is commonly accomplished using high resistance coatings, isolation joints, dielectric fittings and isolation pads.
This paper highlights a successful rehabilitation of a regulated steel line with flexible steel pipe. The pipeline resides under jurisdiction and was approved by both state and federal pipeline safety administrations. Upon completion, the rehabilitated system restored transmission while also reducing overall operating risk. Use of the flexible steel pipe allowed the operator to utilize a dual-containment design while also implementing real-time continuous annulus monitoring on multiple interfaces, effectively reducing risk to environment and local residents.
Corrosion is not just a sustainment concern that impacts the availability and safety of critical structural assets; it is also a damage mechanism that should be considered during the initial design phase. By considering the corrosion process and associated preventive strategies during the design phase it is possible to reduce total ownership cost and improve equipment readiness. The Department of Defense spends more than $23 billion each year to control corrosion on aircraft and other equipment in its operations around the world.
Galvanic anodes have been used to provide various levels of corrosion protection to reinforced concrete structures for many years.
From day to day, Robots advance from testing in labs to operating in the outside world. Theindustrial application of Robotic technologies continually increases, providing unique solutions fordifferent challenges. Flare System is an important and critical equipment required for continuoussafe operations for any petrochemical plant addressing proper burning of excess hydrocarbongases, unusable gases which cannot be recovered or recycled, and gas flaring protects againstthe dangers of over-pressure. This paper discusses the different types of robotic inspection,advantages, and limitations based on actual site demonstrations. As an innovative case, here tointroduce actual business case for close aerial inspection and surveying technique to avoidpolyethylene plant shutdown and providing a reliable inspection technique for on-stream integrityevaluation for the flare tip. Drones, formally known as unmanned aerial vehicles (UAVs), are aflying robot that can be remotely controlled, and offer an innovative inspection method launchedbetween 2006-2008 for Engineering professional aerial inspection and surveying using RemotelyOperated Aerial Vehicles (ROAVs). The visual inspection detection accuracy of (ROAV) offerhigher than the normal visual inspection and easily approach all the flare structure from fourdirections. Drone inspection cost is competitive considering the cost of maintenance to dismantlethe flare tip. Drone inspection can be used to assess the elevated flare parts for any seriouslydamage in order to define a clear maintenance scope ahead of shutdown.