Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Evaluation of metal-based structures has relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. This work uses surface chemistry and electrochemical techniques to interpret the chemical changes occurring on low carbon and stainless steel during atmospheric and accelerated corrosion conditions to find a correlation between its accelerated and long-term corrosion performance.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In the mid-1990s, the US Navy’s technical community, led by Naval Sea Systems Command (NAVSEA), recognized existing coatings used to protect the inside of ships’ tanks were failing on average 5-8 years after application. The high cost to blast and recoat over 11,000 tanks every 5-8 years, not counting submarines and aircraft carriers, was prohibitive. To address this issue, the Navy conducted a study to analyze the problem and decided to replace these legacy coatings with high solid epoxy coatings.1
The paper reviews the history of Hydrogen Induced Stress Cracking (HISC) failures of duplex and super duplex stainless steels when deployed subsea and subject to CP at potentials around minus 1V.
Multi-layer polypropylene (MLPP) insulation coating is used for thermal insulation of subsea pipelines. However in recent years - with higher wellhead operating temperatures - high temperature (HT) Fusion Bonded Epoxies have been used. This paper describes the author's experience with the MLPP systems over the last 20 years.
In this work, the open circuit potential of different stainless steel grades as well as nickel based and copper based alloys has been systematically measured in seawater under different experimental conditions. In particular the effect of temperature, oxygen content and chlorination level have been studied.
Corrosion is a major cause of structural deterioration in the marine/offshore industry. FOr that reason, reliability assessment and maintenance planning of these structures are crucial. In the current work a combination multi-phase phenomenological and mechanistic model for pitting corrosion is tested using Bayesian network (BN) approach.
As part of a project to develop a database of seawater corrosion resistance including resistance to microbiologically-influenced corrosion (MIC) seawater, MIC exposure tests of five stainless steel alloys were undertaken for three and six month durations.
This study describes a laboratory test system which was specifically developed to assess the ability of biocides to lower microbial corrosion rates. It was found that the common oilfield biocides THPS and glutaraldehyde, dosed at concentrations of 300 ppm for 4 hours weekly over 5 weeks, could reduce MIC rates from 109.7 mpy to as low as 4.3 mpy
Crevice corrosion affects the integrity of stainless steels used in oil and gas components exposed to seawater. In this work, the crevice corrosion resistance of a 22-Cr duplex and a 25-Cr super duplex stainless steels (UNS S31803 and UNS S32750, respectively) were investigated.
Requirements for corrosion protection for new large offshore wind farms are extended to 25 years’ maintenance-free service lifetime. Therefore, ISO 12944 is being updated. To bring down construction cost for offshore wind, initiatives have been taken to industrialize the coating application process and use standard components.
An effort was executed, to leverage the inherent benefits of polysiloxane coatings, to investigate, to assess or develop, and to implement an effective corrosion stain remover in the Navy with the focus of reducing both maintenance costs and time.
Nanoparticles are being considered in the development of durable coating systems due to their beneficial electrical and mechanical properties. The present study aims to investigate the corrosion performance of a nanoparticle enriched zinc rich primer (NPE-ZRP) for structural steel in aggressive marine exposure.