Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper details with the unexpected cracking encountered in the outlet nozzles of all three reactors for Platformer unit, during a scheduled shutdown. The unit was commissioned in 1957 and the reactors metallurgy is as per withdrawn ASTM standard, A301 Gr. B (1Cr-1/2Mo). The isolated cracks were located at the upstream edge of the inset nozzle and running vertically down. The cracking in the high-pressure fixed bed reactor outlet nozzles was successfully repaired in-situ. This paper reviews the circumstances which led to these failures and highlights the lessons learned from each failure.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Cavitation occurs in localized areas where there is a pressure drop across a structure; the water goes through a phase transition and forms water vapor. These vapor bubbles implode, resulting in high velocity micro-jets which impact adjacent surfaces. These impacts release shockwaves of energy, which cause microscopic particles of the surface material to flake off.1 Repeated micro-jet impact causes microfractures in the affected surfaces and leads to pitting.
Seawater injection is commonly utilized for offshore wells to maintain or increase oil production; however, treatment for seawater before injection is always necessary to reduce or remove bacteria, dissolved oxygen, sulfate, and other impurities. Seawater typically has >2000 mg/L sulfate. Without proper sulfate removal, such high levels of sulfate can cause not only barium sulfate, strontium sulfate, and calcium sulfate scales, but also reservoir souring and H2S corrosion in the presence of sulfate reducing bacteria (SRB). Therefore, sulfate removal from seawater is critical before seawater injection into reservoir.
The corrosion resistance of sucker rod materials can be a significant concern, especially in aggressive service environments with high acid gas concentrations. Corrosion-related failures have been associated with increased levels of produced hydrogen sulfide (H2S) and carbon dioxide (CO2). The presence of corrosion damage, which is characterized by local material dissolution and pitting formation under the influence of CO2 and/or H2S, provides the initiation sites in a fatigue cracking mechanism. The fatigue crack propagation in corrosion aggressive environments is associated with the following factors: (1) local tensile stress concentration at crack tip, and (2) local corrosion dissolution. Therefore, using a material that tends to re-passivate as it interacts with the environment would be the optimum solution in order to mitigate the likelihood of field failures and reduce overall operating costs. Regarding passive film disruption processes abrasion and high temperature influences were not considered at this stage of the present study and repassivation kinetics were not measured. Conventional sucker rod production processes include normalize and temper (N&T) or quench and temper (Q&T) heat treatments to meet desired strength levels of low alloy steels. In order to enhance the corrosion properties and provide a resistant sucker rod solution, 13Cr martensitic stainless steel may provide a viable alternative to low alloys steels. This paper focuses on the characterization of 13Cr sucker rod material by comparing the general corrosion and corrosion fatigue performance with low-alloy steels.
The crevice corrosion resistance of UNS S31266 and UNS N06625 was investigated by determining their critical crevice corrosion temperatures (CCT-values) in different solutions. The crevice formers described for tubes in ISO 18070 were used. Creviced samples were tested according to ASTM G150 and ASTM G48.For the electrochemical method ASTM G150 both 1M NaCl as specified in the standard and a modified test using 3M MgCl2 were used as test-solutions. The ASTM G48-test was performed using an acidified ferric chloride solution and a testing time of 72 hours. In both the electrochemical test and in the G48-test a torque momentum of 0.28 Nm for the crevice former was compared with a torque momentum of 1.58 Nm.It was found that the CCT-values of UNS S31266 were typically higher than for UNS N06625 in all tests. Additionally the CCT-value for UNS N06625 consistently decreased when the smaller crevice gap was used. This further increased the difference in CCT-values for the two alloys to the benefit of UNS S31266 for which CCT-values were similar at 0.28 and 1.58 Nm. The difference between the alloys is compared with published results and theories.Key words: Crevice Corrosion Crevice Gap Tube UNS S31266 UNS N06625 NaCl MgCl2 Acidity Chloride Concentration
The Effluent Treatment Facility (ETF) at the Hanford Nuclear Reservation site is a multi-waste treatment facility that removes radioactive and hazardous contaminants from various sources such as condensate wastewater generated by 242-A Evaporator campaigns, groundwater projects, solid waste disposal facilities, and other Hanford clean-up activities. It has been operational since December 1995 and will reach its original 30-year design life in 2025. The waste streams processed in the ETF are different from Hanford tank-farm wastes, in that the ETF wastes range to relatively higher chloride and sulfate concentrations, and lower nitrate and nitrite concentrations.
Steel is a common material for the construction of large infrastructures. It is a main constituent used for building of, offshore drilling platforms, steel cast dock, pipeline in seabed, coastal bridges and ship hulls. Corrosion of offshore structures is a serious matter in terms of degradation and deterioration of these structures in a corrosive electrolyte such as seawater, which could lead to fatigue cracks, brittle failure and unstable failure.
Cathodic protection is used in addition to organic coatings to ensure the integrity of offshore and onshore buried structures against corrosion. The cathodic protection efficiency is usually ensured by keeping the potential of the structure to be protected in a narrow range following standard recommendations such as ISO 15589-1 and/or NF EN 12954. For onshore buried structures, this potential range is limited by the protection potential Ep and the limit potential El.
During drilling operations, the components in the drill string including the bottom hole assembly (BHA) remains in permanent contact with the drilling fluid. Therefore, besides non-magnetic properties and high strength the corrosion resistance of the materials utilized for the BHA plays a decisive role specially in applications involving harsh environments. In fact, strain-hardened CrMn-austenitic steels commonly used in directional drilling technology show a high susceptibility to pitting corrosion and environmentally assisted cracking in drilling fluids with a high chloride (Cl-) content at elevated temperatures.