Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Departmant of Defense Specifications/standards for the prevention and control of corrosion in the aerospace field.
The most effective means to control atmospheric corrosion of aircraft is through the use of protective coatings. In addition to combating corrosion which represents a risk to the safe operation of an asset there are strong economic and environmental drivers to extend the service life of aerospace coatings. Repair and replacement of protective coatings that no longer meet performance requirements generate a significant volume of environmentally hazardous waste which includes the coating material media used for coating removal as well as the waste materials generated in surface preparation and reapplication of the coating system. Development and selection of durable coating systems have often been limited by the ability to produce service-relevant failures in accelerated laboratory tests. Existing accelerated test techniques do not adequately employ the chemical thermal or mechanical stressors that produce damage mechanisms such as coating cracking at structural discontinuities in airframes. Additionally individual coatings may be qualified separately rather than as part of a multi-layer system. As a result current test methods cannot be used for accurate quantification of coating performance and service life. In this work test methodologies previously described that employ combined environmental and mechanical loading are used to excite relevant failure modes of multi-layer systems such as coating cracking at sealant-filled lap joints. The kinetics of moisture ingress coating cracking and damage progression are quantified throughout static and dynamic mechanical tests performed under cyclic atmospheric conditions using in situ measurements of coating properties. It is observed that the coating barrier properties and cracking are dependent on stress temperature and humidity as well as the interaction effects of these parameters.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Test methodologies for protective coatings of aircraft are analyzed and evaluated in a variety of conditions. Mechanisms and kinetics of damage progression are quantified using in situ measurements of coating system properties.
The aim of this work is to analyze the role of corrosion management in prevention of corrosion accidents related primarily to safety of personnel and the environment. This is achieved by anti-corrosion measures, corrosion monitoring, regular inspection, study of each accident, implementation of meetings, publications, education, and knowledge transfer.