Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This production asset located in the deep-water offshore Brazil, producing heavy oil in the range of 16 to 24 oAPI. Mudline caisson separators with electrical submersible pumps (ESPs) are used to process fluids from multiple wells and boost them to the receiving floating production, storage, and offloading (FPSO) vessel(1). There are significant flow-assurance and corrosion challenges in operating the asset. One of the challenges is the production fields have limited subsea umbilical, necessitate the use ofmultifunctional products to maintain the field’s integrity and mitigate any flow assurance and scale issues.
Estimated about ~3 million bbls/day, the Brazil oil field plays a significant part in the South American unconventional thriving, especially in current global oil supply constrains due to Ukraine crise. The oil field located in subsea Latin America, produces a large amount of heavy oil in the range of 16 to 24O API. The water composition is characterized with high chloride and high total dissolved solids (TDS), posing integrity and flow-assurance challenges to the operating asset. To mitigate the corrosion and scalereparations in deep-water environment through limited injection points, a combined corrosion and scale inhibitor was demanded.
Assessing the corrosion degradation of aboveground tank bottom plates is a critical challenge for the industry. Internal inspections are a useful way of assessing the integrity of assets but might severely impact normal plant operation. In 2006, Chang et al. conducted a study on storage tank accidents and concluded that 74% of reported accidents occurred in petrochemical refineries, and 85% of them had caused fire and explosions.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Over the past two decades, bio-based fuel-grade ethanols (BFGEs), derived from a variety of agriculture feedstocks (e.g., corn, sugar cane, soybean oil, and sugar beet), are increasingly being used as a renewable energy source to reduce the dependence of fossil fuels for motor vehicle applications. One cost-effective and environmentally benign way to transport BFGEs is through steel transmission pipelines. However, cases of environmentally assisted cracking (EAC) in the transportation of BFGEs have been documented including some in pipelines.
In the rectification process of reinforced concrete structures, one of the primary considerations made is the selection of concrete repair methodology and repair products. The suitability of concrete repair products is determined by the structure’s function, and some of the main technical aspects which are considered include compressive strength, bond strength, shrinkage and expansion, tensile strength, chemical resistance, and flow characteristics.