Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

Corrosion Risk Prediction Based On Offshore Pipeline Service Database And Machine Learning

Pipelines have been the main transportation pattern of oil and gas because of their safety and economy, which are considered as the lifeline of offshore oil and gas transportation. With the booming development of offshore oil industry, the frequency of pipeline leakage is also increasing. Corrosion is one of the important factors due to some characteristics such as operating environment, service life and transportation medium, etc., which damages the integrity of the pipeline and damage the normal operation of pipelines. Furthermore, leakage accidents caused by pipeline corrosion have occurred all over the world, accounting for 70~90% of total accidents, which has caused huge economy losses and catastrophic environmental damage.

Product Number: 51322-17711-SG
Author: Zhihao Qu, Xiaoqi Yue, Yi Li, Xiaqiao Li, Lihua Hu, Yue Ren, Yao Lv, Lei Zhang
Publication Date: 2022
$0.00
$20.00
$20.00

Pipelines are an important part of offshore oil and gas field development facilities and the main means of gathering and transporting offshore oil and gas resources. However, pipelines are subject to deterioration and degradation in the corrosion media. Corrosion risk assessment and prediction is an effective way to avoid leakage of oil and gas field pipelines and facilities, ensure safe operation and save cost. Hence, in this study, a machine learning model with excellent predictive performance was constructed for corrosion rate, to provide an effective mean for processing complex corrosion data and to provide a useful tool for further exploration of submarine pipeline corrosion problems. Meanwhile, a method that can effectively and quickly evaluate the accuracy of corrosion rate prediction model was explored, which can be used as a reference to select the most appropriate and accurate Machine Learning (ML) model based on existing data.

Pipelines are an important part of offshore oil and gas field development facilities and the main means of gathering and transporting offshore oil and gas resources. However, pipelines are subject to deterioration and degradation in the corrosion media. Corrosion risk assessment and prediction is an effective way to avoid leakage of oil and gas field pipelines and facilities, ensure safe operation and save cost. Hence, in this study, a machine learning model with excellent predictive performance was constructed for corrosion rate, to provide an effective mean for processing complex corrosion data and to provide a useful tool for further exploration of submarine pipeline corrosion problems. Meanwhile, a method that can effectively and quickly evaluate the accuracy of corrosion rate prediction model was explored, which can be used as a reference to select the most appropriate and accurate Machine Learning (ML) model based on existing data.

Also Purchased
Picture for Estimating Corrosion Rates for Underground Pipelines: A Machine Learning Approach
Available for download

Estimating Corrosion Rates for Underground Pipelines: A Machine Learning Approach

Product Number: 51319-13456-SG
Author: Joseph Mazzella, Len Krissa, Thomas Hayden, Haralampos Tsaprailis
Publication Date: 2019
$20.00