Search
Filters
Close

Save 20% on select titles with code HIDDEN24 - Shop The Sale Now

Corrosion assessment of additively manufactured stainless steel 316L in 3.5 wt% NaCl

Additive manufacturing (AM) techniques are being studied widely for producing intricately shaped parts and structural components with superior mechanical properties and corrosion resistance. Several detailed studies have been performed on selective laser melted (SLM) stainless steel 316L (SS316L) alloys which describe the effects of process parameters, anisotropy and heat treatments on the corrosion behavior of these alloys. These studies have revealed various pit morphologies and passive films formed on the alloys in various solutions.

Product Number: 51323-19424-SG
Author: Deeparekha Narayanan, Ryan Brooks, Matthew Vaughan, Bilal Mansoor, Ibrahim Karaman, Raymundo Case, Homero Castaneda
Publication Date: 2023
$0.00
$20.00
$20.00

Additive manufacturing (AM) is a rapidly growing metal processing technique that not only enables the making of complex geometries that are difficult to produce by using traditional methods. Stainless steel 316L displays high resistance to localized corrosion attack by chloride due to the presence of molybdenum and chromium leading to the formation of a stable passive film. In this work, we aim to characterize and compare the active-passive characteristics of stainless steel 316L manufactured using directed energy deposition (DED) and selective laser melting (SLM) techniques. The effect of anisotropy was also studied by obtaining samples perpendicular and parallel to the building direction. The testing solution used was 3.5 wt% NaCl maintained at a pH of 8 adjusted by borate buffer. A comprehensive understanding of corrosion performance of materials was obtained by testing using cyclic polarization (CP) and electrochemical impedance spectroscopy (EIS). The tested alloys were characterized to understand the mechanism of chloride attack on the microstructural features of the AM alloy.

Additive manufacturing (AM) is a rapidly growing metal processing technique that not only enables the making of complex geometries that are difficult to produce by using traditional methods. Stainless steel 316L displays high resistance to localized corrosion attack by chloride due to the presence of molybdenum and chromium leading to the formation of a stable passive film. In this work, we aim to characterize and compare the active-passive characteristics of stainless steel 316L manufactured using directed energy deposition (DED) and selective laser melting (SLM) techniques. The effect of anisotropy was also studied by obtaining samples perpendicular and parallel to the building direction. The testing solution used was 3.5 wt% NaCl maintained at a pH of 8 adjusted by borate buffer. A comprehensive understanding of corrosion performance of materials was obtained by testing using cyclic polarization (CP) and electrochemical impedance spectroscopy (EIS). The tested alloys were characterized to understand the mechanism of chloride attack on the microstructural features of the AM alloy.

Also Purchased
Picture for 01342 Metallic Materials for Concentrated Sulfuric
Available for download

01342 Metallic Materials for Concentrated Sulfuric Acid Service

Product Number: 51300-01342-SG
ISBN: 01342 2001 CP
Author: Michael H. W. Renner
$20.00