Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper will look a data derived from sites that demonstrate this evaluation of soil resistivity and how this data may be applied in other aspects of cathodic protection and pipeline integrity management.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In this paper, a preliminary study of the effect of intermittent CP has been carried out in order to investigate the effect of a temporary current interruption on the potential monitoring and on the residual corrosion of the metal.
Corrosion has long been recognized as an extremely costly naturally occurring phenomenon that can be controlled through the proper application of corrosion prevention and control methods protecting public safety, extending the service life of assets and preventing damage to property and the environment. The landmark Cost of Corrosion Study published by the U.S. Federal Highway Administration estimated that corrosion costs were approximately 3.1% of the nation’s GDP. Within the study, several key sectors of the US economy were studied. This paper is focused on one of those areas – the corrosion risks associated with storage tanks that contain hazardous materials. The study determined that the annual direct cost of corrosion for above ground hazardous material storage tanks (ASTs) in the US was ~$4.5 billion.
The goal of this research was to improve the understanding of the mechanisms of cathodic protection (CP) by determining the interactions between corrosion and local chemical parameters, such as pH, under varying CP conditions, both in the absence and presence of MIC.
In the recent years, the reduction of the environmental footprint of industrial processes is gaining momentum, targeting the carbon neutrality. This also involves Aluminum industry, in which the use of secondary (e.g. recycled) alloys is a possible solution in order to decrease the greenhouse gases (GHG) emissions. Indeed, raw materials produced starting from secondary Aluminum show GHG emission values up to one order of magnitude lower with respect to their primary equivalents.
Measurement and interpretation of cathodic protection data in plant facilities present challenges where mixed metals are electrically continuous with the protected structure. This paper address some of the confusion and important aspects when using coupons for buried piping in mixed-metal circuits.
In 2002 NACE International published a cost of corrosion study backed by the U. S. Federal Highway and Safety Administration estimating the annual cost of corrosion in the U. S. to be $276 billion. In the more detailed breakdown of these costs by industry/market segment the cost associated with the water and wastewater utilities segment in the “Utilities” category was estimated at $36 billion. The water and wastewater utilities segment represented the single largest cost segment in the study. The $36 billion estimate for this single segment of the Utilities category represented more cost than any of the other four categories: Transportation, Infrastructure, Government, and Manufacturing & Production.
The use of cathodic protection has become the preferred method for mitigating corrosion of steel reinforcement in concrete. A wide variety of both impressed current and sacrificial systems have been effectively used to control the effects of corrosion.
An AC interference study was conducted in 2015 after the installation of a 240 kV powerline. Risk of AC corrosion was indicated. Describe are both the challenges and the solutions, including the design of a temporary mitigation system allowing energization of the powerline at reduced power.
Environmentally Assisted Cracking (EAC) of gas transmission lines constitute about 2.6% of the total number of significant incidents recorded in the U.S. Pipeline and Hazardous Materials Administration (PHMSA) database [1]. For the hydrocarbon liquid pipelines, the EAC-related incidents constitute about 1%. Although Stress Corrosion Cracking (SCC) incidents are a relatively small percentage of significant incidents, it is important to predict the location and rate of growth of SCC because of the potential for catastrophic consequences from the growth of undetected cracks.
In this paper exhaustive field study trials to monitor the pipe to soil potential over an extended time period and subsequent analysis of data has been discussed with reference to the critical Combined Cathodic and Anodic Interference phenomena observed on pipelines.
The presentation discusses use of combined direct monitoring and wireless local networking technologies allowing multiple data types from several locations in a gas storage field to be accessed through a single field device.