Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
There are several ways to validate the performance of a cathodic protection (CP) system for buried pipelines. Over the years, pipeline networks and their corrosion challenges have become increasingly complicated, not least due to the many sources of both AC and DC interference that affects CP operation. Also, the various measurement techniques that can be applied to test CP effectiveness has increased over the years. Finally, the sheer number of buried pipeline miles has been constantly increasing.
The traditional instant-off survey is time-consuming and will not provide information on the continuous evolution of the pipeline instant-off potential. This paper presents results from a small- and large-scale test of a remote-controlled GPS time-synchronized remote monitoring system, that is capable of capturing the instant-off potential at every logger position, when synchronized with a rectifier interrupter unit. Additionally, the loggers have a built-in line-current measurement module, that allows for detection of changes in the CP consumption in between logger positions, allowing for detection of 3rd party coating damage incidents. Finally, the loggers are capable of full AC/DC interference analysis with associated ER probe corrosion rate measurements.
Oil and gas buried pipelines are protected against corrosion by both organic coatings, a passive protection system, and cathodic protection, an active protection system. When coating defects occur, CP controls the corrosion of the exposed steel surface. From an operating point of view, cathodic protection interruptions can occur on the network during interventions, consignments, or technical problems. Literature indicates that during CP interruption the corrosion rate of the metal remains lower than its free corrosion rate. Application of CP confers a remanence of protection to the metal. The objective of this study is to determine the safe duration for cathodic protection interruptions depending on environmental and cathodic protection conditions.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The electrical conductivity of the electrolyte is one of the key parameters in the electromechanics of corrosion. Highly conductive electrolytes will permit more current and increase corrosion rates. Conversely, resistive electrolytes will enable less current to flow until the necessary conditions for corrosion are no longer satisfied or slowed.
Scale and corrosion inhibitors are commonly used in many oil and gas production systems to prevent inorganic deposition and to protect asset integrity. Scale inhibitor products are based on organic compounds with phosphate or carboxylic functional groups such as amino phosphonates, phosphate esters, phosphino polymers, polycarboxylate and polysulfonates,1 as shown in Figure 1. These anionic groups have strong affinity to alkaline earth cations and can adsorb on the active growth sites of scale crystal (Figure 2), resulting in stopping or delaying the scale formation process.