A microbial sampling program was initiated at the Idaho National Engineering and Environmental Laboratory (INEEL) to ascertain the effect of microbial activity on the corrosion of aluminum clad spent nuclear fuel (SNF) stored in wet and dry conditions. In the newest fuel storage pool at the INEEL (CPP-666) pitting corrosion has been observed on aluminum corrosion coupons that can not be explained by the excellent water chemistry. Pitting corrosion of the aluminum-clad SNF and corrosion coupons has been observed in the older fuel storage pool (CPP-603). Therefore a microbial assessment of the bulk water, and basin surfaces of both fuel pools was conducted. The results of this microbial enumeration show that a viable and active microbial population does exist in planktonic form. Sampling of aluminum corrosion coupons placed next to stored fuel elements show that microbial attachment has occurred and a biotilm has formed. The sampling program was then extended to the surfaces of wet and dry stored fuel elements. Viable cells or spores were found on the surfaces of the ATR fuel elements that were stored under wet and dry conditions. This paper discusses the
methodology of sampling the surfaces of SNF stored under wet conditions for the presence of microorganisms and the types of organisms found. Keywords: microbiologically influenced corrosion (MIC), spent nuclear fuel (SNF), biofilm, aluminum, microbially sampling, radiation