Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
While performing cathodic protection surveys, carrier pipe and casing potential readings are typically recorded at the same test station location near the end of a casing. Comparing these potentials should reveal a difference between the cathodically protected pipe versus an unprotected and electrically isolated casing. The difference in potentials is one of available tests to determine whether a casing may be electrically shorted to the carrier pipe. The pipe-to-electrolyte and casing-to-electrolyte potential comparison is usually the initial “screening” method.
AMPP SP-0200-2014 Steel Cased Pipeline Practices is the industry consensus guidance document detailing techniques to screen for and evaluate cased crossings for shorts. The Standard Practice (SP) provides various non-mandatory monitoring techniques that may be applied to evaluate the presence of a shorted condition.This abstract provides a case study by one pipeline operator and their decision to utilize 50 mV as a potential screening criterion for shorted casings.
Traditional Corrosion Growth Rate (CGR) models used in the integrity assessment of corroded pipelines are deterministic. A common Magnetic Flux Leakage (MFL) inline inspection (ILI) tool performance specification on general corrosion anomaly depth is +/- 10% Wall Thickeness (WT) at 80% confidence which corresponds to a standard deviation of 7.81% WT. Probabilistic Corrosion Growth Rate (PCGR) models incorporate these large measurement uncertainties and provide more realistic reliability assessments
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The production of hydrocarbons from a reservoir involves the drilling and interaction of a well with a reservoir, which initiates the natural flow of the hydrocarbons from the virgin reservoir to the surface. However, as production continues, the reservoir pressure is depleted, which results in a reduction of the hydrocarbon production rate due to reservoir maturity. This is usually accompanied by increased water-cut levels and a corresponding decrease in gas production, which may not only reduce but completely stop the flow of fluids from a well.
The range of factors affecting the susceptibility of equipment to corrosion under insulation (CUI)are numerous. Some of these factors might be controlled through better design, more robustinstallation procedures, and using better quality coatings. However, there are other risk factors such as operating temperature, material type, and environmental conditions that cannot be easily modified.