Search
Filters
Close

10244 Corrosion Behavior of Technetium Waste Forms Exposed to Various Aqueous Environments

Product Number: 51300-10244-SG
ISBN: 10244 2010 CP
Author: Edward Mausolf, Frederic Poineau, and Ken Czerwinski
Publication Date: 2010
$0.00
$20.00
$20.00
Technetium is a long-lived beta emitter produced in high yields from uranium as a waste product in spent nuclear fuel and has a high degree of environmental mobility as pertechnetate. It has been proposed that Tc be immobilized into various metallic waste forms to prevent Tc mobility while producing a material that can withstand corrosion exposed to various aqueous medias to prevent the leachability of Tc to the environment over long periods of time. This study investigates the corrosion behavior of Tc and Tc alloyed with 316 stainless steel and Zr exposed to a variety of aqueous media. To date, there is little investigative work related to Tc corrosion behavior and less related to potential Tc containing waste forms. Results indicate that immobilizing Tc into stainless steel-zirconium alloys can be a promising technique to store Tc for long periods of time while reducing the need to separately store used nuclear fuel cladding. Initial results indicate that metallic Tc and its alloys actively corrode in all media. We present preliminary corrosion rates of 100% Tc, 10% Tc – 90% SS85%Zr15%, and 2% Tc – 98% SS85%Zr15% in varying concentrations of nitric acid and pH 10 NaOH using the resistance polarization method while observing the trend that higher concentrations of Tc alloyed to the sample tested lowers the corrosion rate of the proposed waste package.

Keywords: Technetium, Waste Form, Anodic Polarization, Corrosion Rate
Technetium is a long-lived beta emitter produced in high yields from uranium as a waste product in spent nuclear fuel and has a high degree of environmental mobility as pertechnetate. It has been proposed that Tc be immobilized into various metallic waste forms to prevent Tc mobility while producing a material that can withstand corrosion exposed to various aqueous medias to prevent the leachability of Tc to the environment over long periods of time. This study investigates the corrosion behavior of Tc and Tc alloyed with 316 stainless steel and Zr exposed to a variety of aqueous media. To date, there is little investigative work related to Tc corrosion behavior and less related to potential Tc containing waste forms. Results indicate that immobilizing Tc into stainless steel-zirconium alloys can be a promising technique to store Tc for long periods of time while reducing the need to separately store used nuclear fuel cladding. Initial results indicate that metallic Tc and its alloys actively corrode in all media. We present preliminary corrosion rates of 100% Tc, 10% Tc – 90% SS85%Zr15%, and 2% Tc – 98% SS85%Zr15% in varying concentrations of nitric acid and pH 10 NaOH using the resistance polarization method while observing the trend that higher concentrations of Tc alloyed to the sample tested lowers the corrosion rate of the proposed waste package.

Keywords: Technetium, Waste Form, Anodic Polarization, Corrosion Rate
Product tags
Also Purchased
Picture for 10252 Consortia of Mic Bacteria and Archaea Causing Pitting Corrosion in Top Side Oil Production
Available for download

10252 Consortia of Mic Bacteria and Archaea Causing Pitting Corrosion in Top Side Oil Production Facilities

Product Number: 51300-10252-SG
ISBN: 10252 2010 CP
Author: Jan Larsen, Kim Rasmussen, Heidi Pedersen, Ketil Sorensen, Thomas Lundgaard and Torben Lund Skovhus
Publication Date: 2010
$20.00
Picture for 10242 Al-Based Barrier Development for Nuclear Fusion Applications
Available for download

10242 Al-Based Barrier Development for Nuclear Fusion Applications

Product Number: 51300-10242-SG
ISBN: 10242 2010 CP
Author: Juergen Konys, Wolfgang Krauss and Nils Holstein
Publication Date: 2010
$20.00
Picture for 10250 Bacterial Characterization and Biocide Qualification for Full Wellstream Crude Oil Pipelines
Available for download

10250 Bacterial Characterization and Biocide Qualification for Full Wellstream Crude Oil Pipelines

Product Number: 51300-10250-SG
ISBN: 10250 2010 CP
Author: Vic Keasler, Brian Bennett, Ben Bromage, Robert Franco, Don Lefevre,Jamie Shafer,Babatunde Moninuola
Publication Date: 2010
$20.00