Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
H2S corrosion mechanisms, specifically at high partial pressures of H2S (pH2S), have not been extensively studied because of experimental difficulties and associated safety issues. The current study was conducted under well-controlled conditions at pH2S of 0.05 and 0.096 MPa.
Under deposit corrosion (UDC) and microbiologically influenced corrosion (MIC) are threats to dead legs and low flow/intermittent flow pipelines. Deposit characterization methods, corrosion mechanisms, mitigation methods and monitoring are addressed.