Search
Filters
Close

07139 Methodology for Assessing the Effects of Plain Dents, Wrinkle Bends, and Mechanical Damage on Pipeline Integrity

Product Number: 51300-07139-SG
ISBN: 07139 2007 CP
Author: Chris Alexander and Kirk Brownlee
Publication Date: 2007
$0.00
$20.00
$20.00
According to statistics compiled by the U.S. Office of Pipeline Safety, mechanical damage is one of the primary causes of pipeline failures in the United States. For more than 30 years a significant body of research has been collected in an effort to understand the failure mechanisms and mechanics associated with pipeline defects that include plain dents, wrinkle bends, and mechanical damage involving dents with gouges. In the U.S. organizations such as the Pipeline Research Council International, Gas Technology Institute, and the American Petroleum Institute have led the change in funding these research efforts, as well as other efforts from research organizations around the world. While some guidance is provided by the ASME B31.4 and B31.8 pipeline codes in assessing pipeline damage, there is no single document that captures the lessons learned from the extensive body of research and experience that currently exists. To a large extent this is related to the complexity of the subject; however, there is a significant need to develop for industry a method for ranking the severity of pipeline damage. At the present time there is no single method for doing this. This paper will provide insights on a proposed three-tiered system to help operators determine which defects represent the most serious threat to the mechanical integrity of their systems. The intent is to provide operators with a grading tool based on research testing, material characteristics, experience, and dent mechanics in order for repairs to be made in a manner that ensures the safe operation of pipeline systems.
According to statistics compiled by the U.S. Office of Pipeline Safety, mechanical damage is one of the primary causes of pipeline failures in the United States. For more than 30 years a significant body of research has been collected in an effort to understand the failure mechanisms and mechanics associated with pipeline defects that include plain dents, wrinkle bends, and mechanical damage involving dents with gouges. In the U.S. organizations such as the Pipeline Research Council International, Gas Technology Institute, and the American Petroleum Institute have led the change in funding these research efforts, as well as other efforts from research organizations around the world. While some guidance is provided by the ASME B31.4 and B31.8 pipeline codes in assessing pipeline damage, there is no single document that captures the lessons learned from the extensive body of research and experience that currently exists. To a large extent this is related to the complexity of the subject; however, there is a significant need to develop for industry a method for ranking the severity of pipeline damage. At the present time there is no single method for doing this. This paper will provide insights on a proposed three-tiered system to help operators determine which defects represent the most serious threat to the mechanical integrity of their systems. The intent is to provide operators with a grading tool based on research testing, material characteristics, experience, and dent mechanics in order for repairs to be made in a manner that ensures the safe operation of pipeline systems.
Product tags
Also Purchased
Picture for 07138 Prediction of Dent Size using Tri-Axial Magnetic Flux Leakage Intelligent Pigs
Available for download

07138 Prediction of Dent Size using Tri-Axial Magnetic Flux Leakage Intelligent Pigs

Product Number: 51300-07138-SG
ISBN: 07138 2007 CP
Author: Scott Miller
Publication Date: 2007
$20.00
Picture for 07141 Case Studies of Successful Pipeline Life Extension Using Integrity Management Practices
Available for download

07141 Case Studies of Successful Pipeline Life Extension Using Integrity Management Practices

Product Number: 51300-07141-SG
ISBN: 07141 2007 CP
Author: Pedro Rincon and Francisco Alexander P. Gonzalez
Publication Date: 2007
$20.00
Picture for 07124 Development of an Uncertainty Based Internal Corrosion Assessment for Oil and Gas Pipelines
Available for download

07124 Development of an Uncertainty Based Internal Corrosion Assessment for Oil and Gas Pipelines

Product Number: 51300-07124-SG
ISBN: 07124 2007 CP
Author: Kirsten Oliver and David Gareth John
Publication Date: 2007
$20.00